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Abstract

This paper extends previous work in Escribano and Jorda (1997) and introduces new
LM specification procedures to choose between Logistic and Exponential Smooth
Transition Regression (STR) Models. These procedures are simpler, consistent and
more powerful than those previously available in the literature. An analysis of the
properties of Taylor approximations around the transition function of STR models
permits one to understand why these procedures work better and it suggests ways to
improve tests of the null hypothesis of linearity versus the alternative of STR-type
nonlinearity. Monte-Carlo experiments illustrate the performance of the different tests
introduced. The new procedures are then implemented on a study of the dynamics of
the U.S. unemployment rate.



1 Introduction

This paper provides tools for the empirical practitioner interested in modelling Smooth Tran-
sition Regression (STR) models. Nonlinear time series models are being used more frequently
in empirical applications, leaving the researcher with a virtual infinity of models and specifi-
cations from which to choose. However. STR models are a general class of state-dependent,
reduced form. non-linear time series models in which the transition between states i+ gen-
erally endogenously generated. They encompass as particular cases the Smooth Trar 1tion
Autoregressive (STAR). the Exponential Autoregressive (EAR). the Threshold Autor: res-
sive (TAR) and the SETAR models.! Together with Hamilton’s Regime Switching motel?
(where the transition between regimes is exogenously generatred by a Markov chain). stare-
dependent models have proven particularly useful in modelling the asvimmetric behavior of
cconomic fluctnations.”

Even after restricting attention to a certain class. the rich parametrization and flexibility
of these models makes the task of specifving the model complicated. Model building usually
starts by performing a nonlinearity test. If there is not enough evidence of nonlinearity, thcre
is no reason to pursue a model that is much more difficult to specify, estimate and ev.anate.
Chan and Tong (1986) discuss the possibility of using likelihood ratio test statistics for resting

linearity against SETAR models. The drawback of this approach is that the distritwition of

the statistic has to be determined by simulation for each application. Based on work by

' See Terasvirta (1994), Haggan and Ozaki {1981). Tsay (1989) and Chan and Tong {1986).

* See Hamilton {1989).

' A variety of recent studies justify this assertion. See Neftci (1984), Sichel (1989) and Rothman {1991)
for example



Tsay (1986). Luukkonen et al. (1988a) introduce a set of Lagrange Multiplier (LM) type
tests that have asymptotic y? distributions. Saikkonen and Luukkonen (1988) considered
LAl tests against bilinear and EAR «lternatives. Tersisvirta (1994) uses these procedures in
several stages of the specification of STAR models.

This paper introduces two new main results. which rely on Taylor series appmximations
to the transition function (between states) around the scale parameter.? [he resulis,
derived in the general context of STR models (which encompass STAR-based ‘ests as u
particular case). are an extension of previous work in Escribano and Jordd (1997). First. we
introduce a new specification strategy extended to include the choice between lop:stic and
exponential STR models. Our selection procedure has higher correct selection frequencies
of the right model. avoids the pitfalls of the rules proposed in Teridsvirta (1994) and is
much simpler to apply. Second. we suggest that in some cases. tests of the null hypothesis
of linearity against STR-tvpe nonlinearitv’  should be augmented to include up to fourth
order terms. Including these terms is necessary to gain power against alternatives where an
exponential STR might be involved. We complement this analvsis with an exhaunstive study
of the dynamics of STR models and the shapes of transition functions in practice throvush
simulations. The paper also provides ample Monte-Carlo evidence in support of these clains
(providing several additional cases to those available in Escribano and Jordd 71997)) and
shows how these procedures work in practice with a different empirical example - a brief

study of the dynamics of U.S. Unemployment.

! Luukkonen et al. (1988a) and Teridsvirta (1094). based on Davies {1077)) introduced this solution for
Smooth Transition Autoregressive models.

Note that this alternative is an assumption imposed by the analysist. The test has power against
alternatives other than STR.



The paper is organized as follows: Section 2 briefly defines and introduces the basic
properties of STR models: Section 3 presents the tests of nonlinearity and their properties:
Section 4 discusses the selection procedure proposed by Terdsvirta (1994) and then introduces
the new alternative; Section 5 presents Monte Carlo simulations of the new tests; Section 6

applies the new techniques to the U.S. unemployment rate; and Section 7 concludes,

2 Smooth Transition Regression (STR) Models

Consider the following STR model:

y=7r, -0 Flzi_gn.0) + (L)

where yy 1s a scalar. 1y = (Loyoy . yroriy . ....ifﬁq)’ = {1.I;) where w, is a vector of
exogenous variables: z,_; will be a scalar. although in general. it conld be a vector. Usually
Zi_g = yi—q where d is the delay parameter which satisfies 1 < d < p for p = max(r.q)
and is assumed known."  Note that when z_y = y_q and w, =0 we have a conventiosal

~/

STAR model. 7" = (mg. 71, oo mp) = (7. 7 ) 0" = (O 01 by) = (0. 0). uy is a martineals
difference sequence with constant variance’ and y; is assumed stationary and erzodic. The
function F{z;_4.~.¢) is at least fourth order. continuously differentiable with respeci 1o the
scale parameter, ~.

The transition function. F(.). is traditionally chosen to be either a logistic or an expo-

nential distribution function.® The exponential transition function is:

See Terdsvirta (1994) when d is unknown.
" This assumption is sufficient ro derive the L) tests below. See White (1984}

In general, 1t could be any continuously differentiable function such that 0 < F{z_4.v.¢) < 1 for all
Zr-a. 1 < d < p. v # 0 and ¢. However, in practice the logistic and the exponential permit the neccesary



Flzi_gon.c) = {1 — exp {—“,(zf_d - C)QH (2)

When 0y = ¢;w; =0 Vvt and 2.y = y;_q, the corresponding ESTR model is reduced to the

exponential autoregressive model (EAR). The logistic transition function” is:

- 1]
Flzi_g,v,¢) = [{1 +exp(-(z_q —¢)} 7" — 5

2 £
In order to illustrate the properties and shapes of the logistic and «xponential transiti i
functions. we simulate two specifications from Terdsvirta (1994). This exercise will provids

a better understanding of the details involved in the specification and nonlinearity testing of

STR models. Consider the following simulation:

Yt = 1.5]”__1 - l.()()l]/p_:_g - ((9() - ().Oy(ﬁl -+ 0795(!/[,_3) F (}/g,l.fv,(‘) - Ut <~1>
where:
- r . 9N h P
Flz_y.~o0) = L1 - exp <JWUUL,I//71 — (‘)“)J (E~PARD
and
Fzgonoe) =1 +exp (—100(yi—1 — (t‘))‘jvl (LSTAR:

with u; 1i.d. N(0.0.02%) and T = 300. Figure 2.1 depicts 3 graphs of the plots of the data.,

yi—1. and F{y,_1.~v.¢) for the following cases: (1) 8y = ¢ = 0 and ESTAR specification:

degree of generality.

" The term —; is added here for convenience but does not affect the results.



(2) g = 0.04: ¢ = 0.02 and ESTAR specification: and (3) 8y = 0.02: ¢ = 0 and LSTAR
specification. The plots on the first column depict the time series of the data and the values
of the transition funetion. The plots in the second columin depict the scatter plots of the
data versus the corresponding valnes of the transition function, thus illustrating its shape.

Consider case (1). The data is symmetrically distributed at each side of the thresnold e.
When ly;-1{ > ¢, then F{y;.1.n,c) = 1, and the dynamic behavior of the data is characroer-
ized by the “upper” linear regime. When |y;_] is “close” to ¢ then Fye—1, . ¢) = 0wl the
dynamics of the “lower™ linear regime dominate. The speed with which the transition 7o
one regime to the other takes place is set by the value of the scale parameter. ~. The shape
of the plot of the values of the transition function and the data tizat we obtain in case (1)
therefore represent that of the nsual ESTAR model.

Now consider case (3). the graph of the tvpical transition function for a LSTAR model.
When yi—y < ¢ then Fly,o1.~.0) >0 - what we denominated. the ~lower™ regime. Con-
verselv. when g,y = ¢ then Fly, y.~.¢) == 1 (the "upper” regime). ~ again determines how
smooth the transition between regimes is. In the extreme case where » — o, then wo ges
a particular case of LSTAR - - the Threshold Antoregressive (TAR) model.

Finallv. the most interesting scenario is that of case (2). The model s a ESTAR ian
notice that the dara, y,_y tends to cluster around the “upper” regime. to the right of the
threshold ¢. In fact. the graphs for cases (2) and (3) are rather similar although the dvnamic
behavior of each model is quite different. This asymmetric behavior in cases when 6y # 0
and/or ¢ # 0 will influence borh the ability to specify and test for a STAR model as we shall

see i the next sections.



3 Testing Linearity Against STR Models

Testing linearity against STR-type nonlinearity implies testing the null hypothesis Hy : 6 =0
in equation 1. However, under the null, the parameters v and ¢ are not identified, rhat s,
they can take any value. Alternatively, we could choose as our null hypothesis Hy . - = 0
in which case neither ¢ nor " would be identified. Davies (1977) showed that convensiost
maximum likelihood theory is not directly applicable to this problem. A solution proy. e
in Luukkonen et al. (1988a) and adopted in Terdsvirta (1994), is to replace F(z_4.7.7 ' in
equation 1 with a suitable Taylor series approximation. Under the null of linearitv, the 1.0
10

test is shown to possess asyvmptotically the usual \* distribution. In practice. the test 18

performed on the following auxiliary regression:

—
[

Yy = ’zT/‘._l_Tf - [9/151. {‘»F-,(’Z[,,d. no= 0. ()H - Ut

where F.(.) indicates the first derivative of F' with respect to n — ~F{.) is obviously the
first term of the Taylor approximation of F~ around ~ = (. Iu particular. /7 (.) for the logi=ic

transition function is:

, 1 .
Fi(zi gy =0,0) = 1 {(2¢_gq — C) iy
which substituted into 5 yields:
! ]‘ !
Ye =T Ly + 1?9 Ly (2-d = €) + U1t (7)

"' The delay parameter, d. is usually unknown. Based on Tsay {1989), Terasvirta (1994) proposes choosing

d such as to minimize the p-value of the nonlinearity test.



The parameters under this specification cannot be identified. After combining terms. we get

the final version of the auxiliary regression:

o
Yo =00+ 0 Ly + B Tyz g + V1t (8)

where 69 = (m) — %76‘90) 5 = (5?’ — ;iqca) where the ¢** term is 6; = (m + %7(;(90 — Od)> :
g = i’)él. The null hypothesis of linearity therefore becomes H) : 57 =0. Note that equation
8 is explosive and generally not a meaningful time series model (see Granger and Andersen
(1978)1 ). Luukkonen et al. (1988a) realized that this test would have low power against
alternatives where 8 is “small” and By is “large” in absolute value since 3) does not include
the By coeflicient -— “detecting a shift in the mean™ problem.

To overcome this difficulty. thev proposed to approximate the transition function with a

third order Tavlor series expansion. that is:

1 . ; . , /
Yo =TIy o+ rf’?'/ﬁt (zt-d =€)+ =0 (zq — ) + vy (9)

where it is important to note that the square powers of the approximation are “dentically

zero. Recombining in terms of identified parameters. we obtain:

~1 ; E
S -~ - ~ 3 )
Y =00+ 8Ty + I Fz g+ IhT2h g+ BTz + v (10)

. . . . . . - )
where now 3oy = 41—8')‘590 and thus we avoid the “detecting a shift in the mean problem.l“

The null hypothesis now becomes H{' : 3] = ) = 34 =0. Following Saikkonen and

' Also note that the alternative now includes models other than STR.

= The details of the correspondence between the parameters in 9 and 10 is derived in the Appendix.



Luukkonen (1988). Terésvirta et al. (1994) and Terdsvirta (1994). a convenient procedure
for computing the LM statistic by OLS consists on estimating the auxiliary regression 10
under the null hypothesis and compute the sum of squared residuals. SSRg. Next. vstimate
10 under the alternative hypothesis and compute the sum of squared residuals, SSR. Fine!ls,
the statistic, T(SSRy—SSR1)/SS Ry is shown to have asymptotically a y? distribution . o1
the null. It is usually recommended to use the approximation given by the F distribwiti
because of the good size and power properties of the test in small samples. We will call tlu
nonlinearity test based on equation 10, NL3 for short.

Note that when the model is an ESTR. we have that Fo{z_g.0 = 0.¢) = (2—g — ¢~
which. after substituting into 5 becomes:

5 ~/ ~1 5 )
yr =y -7 =200 Foz g 00 Tizig vy {11)

which in terms of identified parameters becomes:

=00+ 80y iz + g v
where in particular 314 = 76y and therefore we do not need to pursue further terms of 1.
expansion since we are able to identifv shifts in the mean via the term Jyg. As a resur
equation 10 is a valid nonlinearity test for either LSTR or ESTR ulternatives.
3.1 Properties of the Taylor Approximation
The transition function of a STR model exhibits two important features. First. the logistic

function (see equation 3. figure 2.1 case (3)) has a single inflection point while the exponential

function (see equation 2. figure 2.1. cases (1) and (2)) has two inflection points. Second. the



even powers of the Taylor expansion of a logistic function are all zero. Meanwhile. all the
odd powers of the Taylor expansion of an exponential function are zero. The first feature
suggests ways to improve the nonlinearity test NL3 of the previous section. In Section 1 we
use the second feature to introduce a new specification procedure to choose between L.5TR
and ESTR models.

The immediate consequence resulting from the difference in shape between the logis:ic
and the exponential function is that we need a second order Taylor series expansion in ¢ivfey
to be able to capture its two inflection points. This is particularly the case when 4 is “smal
in absolute value (smooth transition) and/or the variance of the residuals. uy is “large”™ such
that a reasonable number of observations are driven to the “upper” regime. A solution to
this problem 1s to expand the auxiliary regression 10 to include the terms resulting from the

second order expansion of the exponential. In particular:

(zp—g — (.')4 j»zl + gy (1

}

o] =

m=rn'r, +6'r, [(z,-(z — )’ ( + 72) -

which rewritten in terms of identified parameters' simply means angraenting the auxiliov

regression in 10 as follows:

T~ o~ P~ 2 Lo~ 3 I~ 4 .
Ur =00 + 8 Ty + AL ziog + $pTe2{_g + BTy 2i_q + F4Lizi_qg + tat i4)

Now the null hypothesis becomes HEY 3] = 3, = 3} = 3 =0. We call this test NL4 for

short.**  The computation of the test is parallel to that of NL3, where either the x* or the

" The details of how the parameters in 13 are transformes into 14 are available in the Appendix.

"When z;_g = 14, this test is similar to a higher order RESET test.

9



F version of the test can be used.

An alternative to the above LM tests (namely NL3 and NL4) is to use the Wald test of
Hansen (1996). This procedure approximates unknown limiting distributions by generating
p-values based on simulation methods. Pesaran and Potter (1997) adapt this strategy i an
interesting application to their floor and ceiling model. However, this alternative il
additional elements of complexity which are easily avoided with the type of LM wouring
discussed here.

Testing in practice involves several important steps such as choice of lag length of the
linear ARX model.!””  choice of the delay parameter.'’ d. and others which are all well
documented in Terdsvirta (1994). However. an important empirical question is to realize
that NL4 requires p extra regressors with respect to NL3, and that NL3 requires 2p extra
regressors with respect to NL1. Lack of parsimony is particularly important with small
sample sizes and/or when the order of the ARX polynomial. p. is high since it reduces the
power of the test. Luukkonen et al. (198%a) recognized this lack of parsimony and suggeste{
an augmented fist order procedure based on equation 8. This consisted on using the follr s nig

auxiliary regression instead of 10:

- ‘
&7 [ 3 ! y S
yr =00+ 00, + 30 2g = Foazi g~ F3az_g ~ Ol P

which we will call NL3A. In the same spirit. we can augment the first order procedure: further

to take into account the results that led us to equation 14. This means including the term

1 Too few terms can cause false rejections of linearity, excesive terms can undermine the power of the
nonlinearity test.

16 - . P N . .
" We mentioned this in the previous section.

10



4427, in the auxiliary regression 15 to obtain the equivalent angmented first order version
of the test which we will call NL4A. The null hypothesis simply becomes HEYVA : 3] =0:
Jog = 334 = P4q = 0 which only requires p + 3 terms. The intuition behind this test is that
the parameters J;4 for j = 2,3,4 collect the effect of a shift in the mean in the nonlinear

regime.

4 Choosing between LSTR or ESTR

4.1 Terasvirta’s (1994) Selection Procedure

Upon rejecting the null hypothesis of linearity (with any of the tests suggested in the previous
section), one might consider using a STR model as a useful nonlinear alternative — recall
that the tests for nonlinearity have power against forms of nonlinearity other than the STR-
tvpe. Terdsvirta (1994) introduced the following model selection procedure (which we will

denominate TP for short). based on equation 10, reproduced here for convenience:
~/ B
S~ I~ a2 /= L3
Y =00+ 0L, + 3Lz g+ Tzl + 3332y vy

1. Test the null hypothesis: Hys @ .3, =0 versus the alternative. Hys @ 35 #0 wirh an F-test
(F3). According to Teriisvirta. rejection of this null would imply rejection of the ESTR

specification since cubic powers of z; 4 in a first order approximation of F(z;_4.7.¢)

are 0.

2. Test the null hypothesis: Hyy @ 35 =0| 35 =0 with an F-test (F3). Terdsvirta's reasoning
is that the terms z} , of a first order approximation to a logistic function are zero when
¢ = 8y = 0 (see equation 6). However, these terms will be non-zero in the ESTR case

~/ . . . .
(except in the unlikely case that # =0). Failure to reject this null is taken as evidence

11



in favor of a LSTR model. Nevertheless, rejection of Hyy is not very informative one

way or the other.

3. Test the null hypothesis: Hy; : 3] =0 | 35 = 35 =0 with an F-test (F}). Following
Terdsvirta, failing to reject Hy; after rejecting Hpy points to a ESTR model. On the

other hand, rejecting Hp; after failing to reject Hpo supports the choice of LSTR.

4. Note which hypotheses are rejected and compare the relative strengths of the rejections.
If the model is LSTR. typically Hp; and Hps are rejected more strougly than Hy.
Therefore. if the p-value of F}, is the smallest of F|, Iy, F3 select the ESTR -pecification.

otherwise. sclect LSTR.

To discuss the problems and pitfalls with TP we reproduce equation 14 for a LSTR and

an ESTR in terms of the Taylor expansion to the transition function, namely:

et e A N fo S 1
Yo =T+ T I+ L0 (2pog — €) + Wl {2p_g — ¢} + Uy (10)

for the logistic STR third order expansion. and:

g N 4 s
Ye =Ty + I+ L'isz (2t—g — )" + l',,/«,l'rt (2 g—c¢) —uy (17)

/

| are not directly

for the second order expansion of the exponential STR. The parameters v
identifiable but make the discussion easier to follow.
Consider the following problems with TP. First: Whenever ¢ # (0, expansion of the term

uhry (24—g — (r)4 will yield non-zero .ftzf__d terms in the auxiliary regression 10 when the model

is ESTR. This is particularly problematic if my and 6y are also non-zero. Additionally, when

12



the variance of the error term is “large” (causing the data to be distributed asymmetrically
around ¢ as we showed in figure 2.1, case (2)), false detection of a LSTR model will become
more frequent.

The second source of problems is intrinsic to the design of the rule: The three F-tests
suggested in TP are nested. This feature becomes troublesome again when ¢ # 0. For
example, if the true model is LSTR, expansion of the term w5z, (2,_q — (,:)3 yields non-zero
'fngvd terms in the auxiliary regression 10. In addition, by conditioning on 3, =0 in Hys,
the terms 7;z2_ . irrespective of whether ¢ # 0. or not, are left to approximate the transition
function — an approximation that the cubic terms presumably were successfully apturing.
It is therefore unclear whether F3 or Iy will have the smallest p-value.

4.2 A New Selection Procedure

Counsider the following example. Suppose that ¢ = 0. It is clear that (hased on equation 16)
if the model is LSTR, the terms Iz} , for j = 2.4,6. ... are exactly zero (le. 35 = ) =0 in
equation 14). Conversely. if the model is ESTR. based on equation 17. the terms ryz) , for
J = 1.3.5.... are exactly zero (L.e. 3] = 34 =0 in equation 14). This suggests the following
selection procedure (which we will call EJP for short) based on NL4. conditicnal on prior

rejection of linearity:
1. Test the null Hop : 3, = 3, =0 with an F-test (Fp).
2. Test the null Hyy : 3] = J5 =0 with an F-test (Fp).

3. Compare the relative strength of the rejection of each hypothesis. If the minimum p-

value corresponds to Fy, select LSTR, otherwise. if it corresponds to Fg. select ESTR.



Note that when ¢ # 0, the test is still effective since we rely on testing the joint significance
of linear and cubic terms relative to the joint significance of quadratic and fourth order terms.
without conditioning.. In addition, EJP provides information regarding non-zero thresholds,
¢. Linear and cubic terms are exactly zero when ¢ = 0 and the model is ESTR. Quadratic and
fourth order terms are exactly zero when ¢ = 0 and the model is LSTR. Therefore, rejecting
Hpr and failing to reject Hop suggests a LSTR model with ¢ = 0. Conversely. rejecting Hog
and failing to reject Hyy, suggests a ESTR with ¢ = 0. This feature provides useful startiny

values in the estimation stage of the model.

5 Monte Carlo Evidence

This section examines how accurate is EJP with respect to TP (and a generalization of
TP for completeness) in choosing the correct STR specification (logistic or exponential). In
addition. we analyze the power properties of NL3 versus NL4. The models that we simulate
here are not proposed by us but rather based on previous experiments in the literature. in
particular: Luukkonen et al. {1988a.b): Saikkonen and Luukkonen (1988): and Terdsvirta
(1994). The specifics and technical details of the experiments are spared to tie Appendiix,
Here we give a general overview and concentrate on the results.

The first 100 observations of each of the series simulated are disregarded to avoid ini-
tialization problems. Each experiment is replicated 1.000 times. Some specifications allow
for values of the variance of the residuals that complement those originally proposed in the
literature. Whenever the specification proposed in the literature was restricted to one type

of model (say an ESTR for example). we constructed its counterpart (in the example. a

14



LSTR) with the same choice of parameters.!” The next section examines the accuracy of
the selection procedures while Section 5.2 examines the power properties of the nonlinearity

tests.

5.1 Accuracy of the EJ Selection Procedure

This section will compare the performance of EJP versus TP. In addition and for the sake
of completeness, we generalize TP to account for the fact that EJP is based on equation 14
and therefore uses information not available to TP. The generalized version of T# will he
denominated GTP for short and is described as follows. Conditional on rejecting Euearitsy.

use the following sequence of nested tests:
1. Test the null hvpothesis H§ : ) =0 with an F-test (Ff) .
2. Test the null hypothesis H§, : 35 =0 | .3} =0 with an F-test <F§> :
3. Test the null hypothesis HS : 35 =0 | 35 = 34 =0 with an F-test <FQ}> .

4. Test the null hvpothesis HSi : 3] =01 3 = 3, = ] =0 with an F-test (Ff) :

{;

. If the minimum p-value from these sequence of rests corresponds to either Jj7 v FY

<

select ESTR. Otherwise. if it corresponds to either F{ or F¥ select LSTR.

The simulations are done by using the general guidelines introduced in the previous
section and available in the Appendix. We used NL4 as our test of nonlinearity (we also used
NL3 but obtained similar results). Conditional on rejecting linearity, we then applied each

of EJP, TP and GTP. Furthermore, conditional on having found the correct model. we then

17

owever. some of the values of v had to be rescalec obtain sensible models.
H ] f the values of v had to be rescaled to obt ensible model

15



looked at the accuracy of being able to determine whether the threshold is zero. The results
of these exercises are reported in Tables 5.1.1 - 5.1.5. In all, we tested three LSTR models
and three ESTR models for different specifications.

The results of the experiments indicate that EJP is much more accurate that either TF
or GTP. EJP’s success rate always increases as the sample size increases (a highly desirabile
“consistency” feature — the result of the particular design of the procedure). In contras:.
both TP and GTP lack this feature in some cases. For example, consider ;¢ = 1 in Tabie
5.1.4 . TP’s correct selection frequency drops from 12.9% to 9.5% and to 3.9% as the sample
size inereases from 50 to 100 and to 200 observations respectively. Compare these numbers
to EJP’s selection frequency for the same case: 62.4%. 70.4% and 78.5%.

Terdsvirta (1994) recognized that TP works well when the LSTR and ESTR specifica-
tions are not close substitutes. However. TP is less effective when the two models are close
snbstitutes and the model is ESTR. It is remarkable that the most impressive gains of using
the alternative EJP occur precisely in this situation. The results are fairly conclusive: EJF
outperforms TP (and GTP): it is simpler to construct (it requires two simnple F-tests and »
straight forward choice): and is "consistent™ in the sense mentioned above.

5.2 Power Properties of the NL4 Test

The kev question we examine here is whether the gains in power from adding the terms 7, =) .

in NL4 outweigh the losses from including p extra regressors in the auxiliary regression 14.
It is clear that if the DGP is a LSTR model, we will loose power because we are including
redundant regressors. If the model is ESTR we should expect to perform well whenever

¢ = 0 and the data is symmetrically distributed between the upper and lower regimes (recall

16



Figure 2.1, case (1)). If ¢ # 0, the benefits of including extra regressors will depend on each
particular case. Tables 5.2.1 - 5.2.3 report this Monte Carlo exercise.

The simulations indicate that with large sample sizes (T° > 300) there is little to no loss
or gain in using NL4 rather than NL3. Both tests detect nonlinearity appropriately with the
power approaching 1 in most cases. However, for smaller sample sizes, NL4 performs hetter,
particularly when the variance is “large” and/or ¢ and 6y are non-zero (asymmetric cases to
those mentioned in Section 2, Figure 2.1). On the other hand, there are no significant thsses
of power when the true model is LSTR. One should view these results with caution. VWhile
NL4 is able to capture some nonlinearities that are hard to capture with NL3. it involves p
additional regressors compared to NL3. When the lag length of the model. p. is long and
the sample size small. parsimony becomes an issue regarding the power of these tests. A

parsimonious alternative in these cases is the test NL4A that we introduced in Section 3.1.

6 Unemployment Dynamics in the U.S.

This section will applv the techniques developed above on an empirical study of the dyriamics
of U.S. Unemployment -— the aim is to illustrate how the previous tests work in practice
rather than producing a detailed analysis of U.S. Unemployment. The existence of usyinme-
tries in the unemployment rate has been a debated topic in recent years. Neftci (1934} used
the theory of Markov chains and applied it to the series of the signs of the first differences
of the unemployment series. Syminetry is thus defined as a situation in which next period’s
probability of moving from a positive to a negative sign is equal to the probability of moving
from a negative to a positive sign. Sichel (1989), after correcting some errors in Neft¢i (1984),

found no evidence of asymmetry using a second order Markov chain. while Rothman (1991).

17



using a first order Markov chain concluded that the unemployment series was indeed asym-
metric. De Long and Summers (1986) define asymmetry as non-zero skewness in a detrended
series and found unermployment to be asymmetric.

The issue of asymmetry is crucial in both theoretical and empirical studies of unemploy-
ment behavior. Theoretical explanations for why unemployment might be asymmetric vary
widely. Non-competitive theories can generate asymmetries as a result of nominnl and reai
rigidities. In Layard et al. (1991). asymmetries are generated by insider-outsider mhanisms
in wage-setting. Labor turnover costs (a difference between hiring and firing costs) sy also
induce asymmetry as in Burgess (19838): Burgess and Dolado (1989)and Pfann au:! Palm
(1993). According to these theories, adjustment costs depend on the size of unemployment.
labor market legislation and union power. Search-theoretic models can also predict asym-
metries through a reduction of search effectiveness and loss of skill induced by long-term
unemplovment (see Pissarides (1992)).

Following the previous discussion. it is natural to test the unemployment series for non-
linearities. Before we proceed. it is useful to consider the raw dara and its properties. Figure
6.1 depicts monthly. seasonally adjusted unemployment rate from January 1948 to Juic 1997
Perhaps the first concern that arises from observing the graph is whether the sevivs is stu-
tionary {recall that the nonlinearity tests are based on the assumption of statiouarity and
ergodicity). Both the Dickey-Fuller test and the Phillips-Perron test clearly rejected the hy-
pothesis of a unit root. This resulr coincides with previous studies in the literature. However.
the majority of these studies incorporate a time trend — an approach that is hard to justify

on theoretical grounds.
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Regarding the asymmetric behavior of unemployment, it is perhaps best to begin with
a simple inspection of the graph of the series and comment its most notable characteristics.
Two features are most striking: First, recessions are characterized by sharp increases of
unemployment within a few months. After reaching its peak, unemployment drops quickly
at first but then its descent to the original level becomes protracted and slow. Second,
related to the previous feature, the duration between trough to peak is much shorter than
the duration from peak to trough (note that we are referring to unemployivent, not the
business cycle itself). It is therefore natural to consider a two-state model such s the STAR
to analyze this series.

6.1 Nonlinearity and Model Selection

The first step is to construct the linear model from which to build the nonlinearity tests
and from which to compare the performance of the nonlinear alternative. The usual infor-
mation criteria {Akaike's and Schwartz's) select an AR(6). However. upon inspeciion of the
autocorrelogram of the residuals and the Ljung-Box statistic. there is evidence of left-over
autocorrelation corresponding to seasonal lags 12, 13. 24 and 25 (despite the fact that we
used seasonally adjusted data). Recall that omirting terms in the specificatior of the linear
model could lead to false rejections of linearity. Therefore. the linear model is expanded to
include these lags as well.

Based on this model, we then perform the tests for nonlinearity that have been presented
in the previous sections, namely: NL3. NL4 and their augmented versions, NL3A and NL4A.
Table 6.1.1 reports the results of these tests as well as the choice of delay parameter, d. and

model selection with EJP and TP. All four nonlinearity tests (NL3. NL4. NL3A and NL4A)
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clearly detected nonlinearity for d = 6. With respect to model choice, EJP clearly selected
ESTAR with a non-zero threshold while TP uneqguivocally selected the LSTAR specification.

6.2 Estimation and Evaluation

Following the results of the previous section, we proceeded to build and estimate ESTAR and
LSTAR specifications to compare their performance. Following Terisvirta (1994), estiri«tioi
is performed by nonlinear least squares. Under certain conditions, inchiding stationari = an:d
ergodicity of the series, the estimators of the parameters are consistant and asymptor: ally

normal.'®

The LSTAR alternative produced models that were eithier not superior tv the
linear alternative or did not converge. As a result we do not report estimation results. The
ESTAR alternative did produce models that had better it than the linear model. The results
of the preferred model are reported in Table 6.2.1,

An important result is worth noting, The ratio of the residual variance of the nonlinear

model to that of the linear model was 0.97, cleariv above the (.90 level proposed by Granger

and Andersen (1978) as a guideline to avoid spurious results. This indicates that while

the ESTAR model has a better fit than its linear counterpart, the wnprovement is e vesy
significant and therefore caution should be exercised in not putting roo much weight = rais
specification. Given this caveat. there is perhaps still some interesting information i :f “an

be extracted from the model.
Figure 6.2.2 plots the transition function versus the data as we did in Secticu 2. This
exponential function shows that the transition between regimes is very smooth —- perhaps

indicating why NL4 achieved the lowest p-value of all nonlinearity tests and why TP might

' See Tong (1990) Chapter 5.



have selected the LSTAR. Figure 6.2.3 plots the impulse response functions for each of the
linear regimes in the ESTAR model. For both regimes, the impulse response functions re-
veal very strong persistence. The upper regime exhibits a sinusoidal decay, characteristic
of polynomials with complex roots, with a period of approximately 40 months. The lower
regime is far more persistent (a 1% increase takes over 20 years to die out). Cornplementing
these plots, Figure 6.2.4 shows the graph of the unemployment rate and the values of the
transition function at each point. An important aspect shown by this graph is the flowing:
Prior to approximately 1975. recessions or in other words. periods of high unempioyment.
are associated with periods in which the lower regime dominates while periods of low uneni-
ployment are associated to the upper regime. Starting around 1975 these dynamics: reverse
themselves. In fact a Chow test for a break point in 1975 performed on the residuals of the
ESTAR model rejects the null hypothesis of no-break.!”

How successful is the ESTAR model in picking up asvmmetries? Aside from the difference
i dynamic behavior explained above. there seems to he ample scope to improve the 1nodelling
stage. The residuals exhibit ARCH. the Jarque-Bera test rejects the null of norniality and
there is left-over skewness in the data (asvmmetry defined in the sense of T+ Long and
Summers (1986)). This suggests that the ESTAR model. while it provide:! some nseful
insights. was not a good model in itself. For our purposes however. we did leavn a few things.
The ESTAR model was clearly more helpful than its LSTAR alternative to describe some
of the features of the data. The nonlinearity tests that we suggested had lower p-values

than those available in the literature and our selection rule did suggest using the most useful

" This might constitute another reason for why the LSTAR model was a poor alternative to the ESTAR.



specification within the STR family — the exponential STR. unlike the rule proposed by

Trrasvirta (1994).

7 Conclusion

This paper provides a variety of useful suggestions and testing strategies for the empirical
analysis with STR models. Our analysis is based on the properties of Taylor approximations
to the transition function and the construction of different LM tests based on auxiliary
regressions that use these approximations. The most significant result is the introduction
of a new specification strategy to choose between exponestial and logistic STR models:
EJP. Monte Carlo evidence showed that this procedure offers much higher correct selection
frequencies. it is consistent unlike its predecessor. TP. and it is straight forward to applv.
Another important result was the realization that nonlinearity testing can be improved. By
aungmenting the existing tests with fourth order terms. we are able to approximate salient
features of the exponential function that increase the power of the test. While this result is
not general - there is not an equivalent gain when the alternative is a LSTR - Monte Carlo
evidence suggests that the gains in power are significant. Maoreover. it constitutes the natural
test in view of our selection procedure.

Understanding the nature of the Taylor approximations and the testing strategies is use-
ful to adapt the testing procedures to the empirical practice of cach particular case. For
example. we showed that in situations where parsimony is at stake. one can construct simpli-
fied versions of the test -~ namely, NL4A. Additionally, if one had transition functions cther
than the exponential and the logistic in mind, specific procedures can be readily constructed

from the derivations in the paper. Finally. the paper expands specification and testing to
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the STR family. Extensions to multivariate analysis are straight forward generalizations to

the equations proposed except for a few obvious details.



8 Appendix

8.1 Derivations of NL3 and NL4

Recall equation 9:

!/ 1 1 B
y, = T, + Z’}E)’gt (zt_q — ) + @7’39/& (z4mgq — (7)% + Uy

from which we derived equation 10:

. "Y/\ ) /o~ )~ D I~ o3
Yt = 0p + 4 g+ J]ﬁf,Zth + 152-_&21,,,1 + 53-_7'1‘31'4({ + Uy

The reparametrization from equation 9 to 10 is as follows:

1 .
d 1?9(1 + =3¢ (g — By)
1 4~
:;/ — _‘____,\3 (}
TR
by = 0 (B — 3eby)
J2d — 18 i 0 Vd



Recall equation 13:

o . 1 .
=1z +0z, {(%d - (v 7?) - 5 (2ta ~ o) 22+ v

from which we derived equation 14:

e r P L2 /L3 f~ 4
=00 + O Ly + L2y + Bl g v Sz gt I Lzl

This transformation is done as follows:

S\ 1
~ ‘ L2\ 2 4
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Sy = (q + 32) (B — 2c84) + ve* (2084 — 360)
3 = Kﬂ + 72) - 3762} 7

St = (7 +9%) b =2 (260 ~ Beta)
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8.2 Description of the Experiments

The series in this study were generated according to each of the models. The first 100
observations from each of the series were disregarded. Each experiment was replicated 1.000
times. The \? version of the rest was used for the simulations to determine the empirical
power of the NL3 and the NL4 rests. Experiments are not size-corrected. Size-correction
showed that the empirical values were close to the asymptotic values. The simulations of
the decision rules were conditioned on prior rejection of linearity with NL4 in its F-version.
Similar results were obtained by conditioning on NL3. The models used and the details of

each simulation are described in Tables 5.1.1 - 5.1.5. Tables 5.2.1 - 5.2.3 ar¢ based ¢n the

same models and their specifics are therefore not repeated.
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Table 5.1.1 - Relative correct selection frequencies

Model: LSTAR, Fig. 2, pg. 496 , cases (a) and (b) in Luukkonen et al. (1988a).
DGP:

e~N(0.25):¢c=0;d= 1:;§/= S
Y _O‘le-l +(Hlyr—l)F(Z/) =¢

Selection Procedures

Sample Size 6, TP GTP EJP C=0 Power NL4
-0.4 0.500 0.406 0.594 0.868 0.064
0 - - - - 0.039

50 0.5 0.736 0.597 0.736 0.868 0.072
1.0 0.853 0.776 0.871 0.838 0.170
1.5 0.904 0.889 0.936 0.787 0.467
-0.4 0.459 0.377 G.811 0.798 0.122
0 - - - - 0.043

100 0.5 0.811 0.724 0.724 0.793 0.127
1.0 0.952 0916 0.936 0.867 0.498
1.5 0.963 0.960 0.978 0.917 0.883

Table 5.1.2 - Relative correct selection frequencies

Model: LSTAR. Fig. 2. pg. 496. cases (c¢) and (d) in Luukkonen et al. (1988a).

DGP:

y, =05y, | +(9,y,4 )F(z, )=¢,
€~ N(0.25).c=0:d=1;y=0.5
Selection Procedures

Sample Size 6, TP GTP EJP C=0 Power NL. 4
-1.4 0.568 0.537 0.947 0.787 0.322
-1.0 0.872 0.788 0.872 0.78% 0.203

50 -0.5 0.802 0.630 0.630 0.667 0.081
0 - - - - 0.047
0.5 0.841 0.735 0.690 0.782 0.113
-1.4 0.594 0.585 0.978 0.823 0.744
-1.0 0.941 0.916 0.935 0.858 0.491

100 -0.5 0.898 0.814 0.814 0.854 0.118
0 - - - - 0.037
0.5 0919 0.871 0.860 0.791 0.272




Table 5.1.3 - Relative correct selection frequencies

Model: 4.1 and 4.6 in Terdsvirta (1994).

DGP:

d=1:u ~N(0.0.04); y = 100 (LSTAR). 1000 (ESTAR).

LSTAR Model

Selection Procedure

Sample Size ¢ M0 TP GTP EJP C=0 Power Ni .4
0 0 0.975 0.965 0.997 0.984 0.950
100 0 0.02 0.932 0.909 0.907 0.913 0.636
0.02 0.04 0.859 0.827 0.577 0.611 0.156
0 0 1.000 1.000 1.000 1.000 1.000
300 0 0.02 0.998 0.996 0.985 0979 0.993
0.02 0.04 0.959 0.925 0.671 0.691 0.386
ESTAR Model
Selection Procedure
Sample Size ¢ Ty TP GTP EJP C=0 Power NL4
0 0 0.885 0.922 0.971 0.963 0.729
100 0 0.02 0.673 0.698 0.670 0.863 0.838
0.02 0.04 0.488 0.569 0.350 0.816 0.606
0 0 0.983 0.989 1.000 1.000 0.999
300 0 0.02 0.876 0.885 0.850 5.995 1.000
0.02 0.04 0.332 0.378 0.569 0.961 0.982




Table 5.1.4 - Relative correct selection frequencies

Model: ESTAR. Table 4, pg. 172 in Luukkonen et al. (1988b).

DGP:
£ ~ ,0.3
NO0.0.56) Y, =03y, - {eXp(— v )- 1}0-9)’,-1 = pte,
Selection Procedures
Sample Size TP GTP EJP C=90 Power NL4
0 0.632 0.698 0.792 0.833 0.106
50 0.3 0472 0.552 0.736 0.739 0.125
1 0.129 0.252 0.624 0.466 0.210
0 0.805 0.836 0.898 0.9504 0.256
100 0.3 0.522 0.609 0.830 0.768 0.317
1 0.095 0.142 0.704 0.403 0.493
0 0.899 0.914 0.963 0.936 0.616
200 0.3 0.659 0.686 0.923 0.753 0.692
l 0.039 0.053 (.765 0.510 0.881
Table 5.1.5 — Relative correct selection frequencies
Model: ESTAR. Table 4.3, pg. 64 in Saikkonen and Luukkonen (1988).
DGP:
u~ N(0.0.09) Y.+ {a + Qexp(—y,‘il )})’H =Y
Selection Procedure
Sample a 0 TP GTP EJP CcC=90 Power
Size NL4
0.9 0.3 0.667 0.746 0.702 0.925 0.114
0.9 0.6 0.826 0.852 0.852 0.836 0.264
50 -0.3 -0.9 0.747 0.783 0.816 0.768 0217
-0.6 -0.9 0.720 0.752 0.858 0.700 0.218
-0.6 0.9 0.379 0.485 0.591 0.667 0.066
0.9 0.3 0.820 0.860 0.847 0.894 0.222
0.9 0.6 0.958 0.967 0.973 0.969 0.669
100 -0.3 -0.9 0.854 0.858 0.913 0.820 0.528
-0.6 -0.9 0.751 0.757 0.941 0.829 0.666
-0.6 0.9 0.600 0.650 0.750 0.475 0.080
0.9 0.3 0.924 0.940 0.946 0.954 0.485
0.9 0.6 0.993 0.994 0.998 1.000 0.974
200 -0.3 -0.9 0.959 0.959 0.982 0.961 0.903
-0.6 -0.9 0.805 0.806 0.980 0.931 0.966
-0.6 0.9 0.805 0.842 0.858 0.840 0.190




Table 5.2.1 - Power simulations

Model: Table 4, pg. 172 in Luukkonen et al. (1988b).

Note: LSTAR model constructed for the same values of v and ¢ as original ESTAR

model.
c=0.6 c=10.6 c=0.6
Sample Model NL3 NL4 NL3 NL4 NL3 NL4
Size Power Power Power Power Power Power
p=0
ESTAR | 0.183 0.168 0.106 0.138 0.054 0.0712
LSTAR | 0.125 0.103 0.203 0.173 0.242 0.202
ESTAR | 0.405 0.411 0.225 0.292 0.107 0.152
LSTAR | 0.242 0.225 0.374 0.347 0.458 0.436
ESTAR |0.725 0.746 0.459 0.623 0.157 0.263
LSTAR | 0.486 0.425 0.683 0.636 0.828 0.792
u=03
ESTAR | 0.232 0.201 0.130 0.139 0.077 0.090
LSTAR 1} 0.127 0.107 0.200 0.173 0.264 0.233
ESTAR |0.439 0.433 0.291 0.339 0.102 0.142
LSTAR | 0.266 0.238 0.393 0.361 0.521 0.461
ESTAR | 0.823 0.828 0.502 0.621 0.178 0.303
LSTAR |0.487 0.423 0.707 0.653 0.822 0.793
p=1
ESTAR |0.384 0.339 0.181 0.172 0.087 0.078
LSTAR 1[0.114 0.102 0.222 0.203 0.281 0.248
ESTAR | 0.702 0.661 0.321 0.319 0.155 0.169
LSTAR [0.240 0.206 0.419 0.385 0.529 0.442
ESTAR | 0.963 0.946 0.629 0.603 0.246 0.246
LSTAR {0.490 0.442 0.714 0.754 L0.850 0.802

(%)

(3]



Table 5.2.2 — Power simulations

Model: Table 4.3, pg. 64 in Saikkonen and Luukkonen (1988).

Note: LSTAR model constructed for the same values of y and ¢ as original ESTAR

model.

=03 c=0.6 a=09
NL3 NL4 NL3 NL4 NL3 ML4
Power Power Power Power Power Power
Sample Size = 50
A=09 ESTAR 0.220 0.20] 0.085 0.095 0.073 0.G72
8=03 LSTAR 0.994 0.994 0.997 0.997 0.996 0.996
A=09 ESTAR 0.462 0.478 0.144 0.158 0.074 0.077
6=0.6 LSTAR* 0.045 0.035 0.045 0.047 0.048 0.059
A=-03 ESTAR 0.387 0.352 0.308 0.306 0.173 0.167
8=-09 LSTAR 0.043 0.042 0.038 0.038 0.053 0.053
A=-06 ESTAR 0.363 0.348 0.338 0.321 0.154 0.167
=-0.9 LSTARY 0.774 0.769 0.829 0.811 0.830 0.814
A=-0.6 ESTAR 0.081 0.078 0.160 0.162 0.100 0.122
6=09 LSTAR 0.069 0.057 0.108 0.104 0.169 0.143
Sample Size = 100
A=09 ESTAR 0.354 0.368 0.117 0.115 0.070 0.067
6=03 LSTAR 1.000 1.000 1.000 1.000 1.000 1.000
A=09 ESTAR 0.787 0.856 0218 0.265 0.084 0.079
0=06 LSTAR* 0.681 0.933 0.679 0.929 0.701 0.930
A=-03 ESTAR 0.742 0.703 0.566 0.578 0.274 0.331
=-09 LSTAR 0.053 0.053 0.065 0.065 0.078 0.078
A=-06 ESTAR 0.790 0.761 0.677 0.685 0.270 0.316
6=-09 LSTART 0.567 0.553 0.761 0.741 0.778 0.771
A=-06 ESTAR 0.153 0.141 0.359 0.355 0.209 0.273
0=09 LSTAR 0.084 0.081 0.205 0.174 0.400 0.351
Sampie Size = 200
A=09 ESTAR 0.610 0.643 0.148 0.162 0.072 2071
0=103 LSTAR 1.000 1.000 1.000 1.000 1.000 1200
A=09 ESTAR 0.969 0.969 0.340 0.470 0.094 0.108
8=06 LSTAR* 0.981 $.997 0.975 0.987 0.978 5.991
A=-03 ESTAR 0.970 0.967 0.869 0.895 0.531 0.658
6=-09 LSTAR 0.085 0.085 0.073 0.071 0.091 0.090
A=-0.6 ESTAR 0.980 0.978 0917 0.957 0.445 0.577
6=-09 LSTAR?T 0.576 0.557 0.724 0.703 0.786 0.774
A=-06 ESTAR 0.312 0.278 0.699 0.735 0.448 0.599
6=09 LSTAR 0.170 0.152 0.466 0410 0.730 0.685
* /10

tv/3000

(9]

(V'S)



Table 5.2.3 — Power simulations

Model: 4.1 and 4.6 in Terdsvirta (1994).

o =0.01 o =10.02 o =0.04
NL3 NL4 NL3 NL4 NL3 NL4
Power Power Power Power Power Power
Sample Size = 100
ESTAR | 0.817 0.824 0.612 0.722 0.245 0.392
LSTAR | 0.875 0.828 0.962 0.951 0.981 0.975
ESTAR | 1.000 1,000 0.983 0.997 0.724 {1924
LSTAR | 0.061 0.058 0.691 0.656 0.946 0.931
ESTAR |0.038 0.041 0.611 0.623 0.424 0.466
LSTAR | 0.028 0.035 0.157 0.139 0.883 0.870
Sample Size = 300
ESTAR | 0.927 0.911 0.825 0.835 0.358 0.414
LSTAR | 1.000 1.000 1.000 1.000 1.000 1.000
ESTAR | 1.000 1.000 1.000 1.000 0.876 0.937
LSTAR | 0.148 0.148 0.993 0.993 1.000 1.000
ESTAR | 0.113 0.114 0.984 0.993 0.903 0.947
LSTAR | 0.030 0.043 0.378 0.373 1.000 1.000




Table 6.1

Non-linearity tests, choice of delay parameter and model selection tests. U.S.
Unemployment Rate, 1948:01 to 1997:07, seasonally adjusted.

Test p-value Delay parameter
NL3A 0.02984 6

NL3 0.00012 6

NL4A 0.01926 6

NL4 0.00009 6

Selection Procedure Model Selected

TP LSTAR

EJP ESTAR with ¢ # 0

Table 6.2.2

ESTAR Estimates and Statistics. U. S. Unemployment Rate, 1948:01 — 1997:07,
seasonally adjusted.

Lower Regime Upper Regime

Coef. Estimate Std. Error  T-Statistic | Coef. Estimate Std. Error T-Statistic
T, 0.0320 0.1031 0.3101 0, 0.0956 0.1262 0.7573
7T, 0.9333 0.0789 11.823 8, 0.2888 0.1316 2.1948
H 0.2044 0.0929 22013 6. -0.3490 0.1575 22156
T, -0.1887 0.0404 4.6681 6, 0.1521 0.0818 1.8504
Ty -0.1727 0.0429 4.0284 0,; -0.1062 0.0494 2.1476
T, 0.2286 0.0431 5.3080

Ty -0.1380 0.0387 3.5697

Tas 0.1262 0.0367 3.4427

¥ 1.1735 1.0422 1.1260

C 6.8691 0.2808 24.467

Summary Statistics

R-Squared 0.986316 ARCH Test (p-val.) 0.012627
S.S.R. 19.64620 Jarque-Bera Res. 0.000000
Log-Likelihood 151.0145 Skewness Res. 0.361244
Durbin — Watson 2.002727 Kurtosis Res. 4.286392




Figure 2.1 - STR Simutated Models
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Figure 6.1 - U.S. Unemployment Rate
(1948:01 - 1997:07)
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Figure 6.2.2. - Transition Function from
ESTAR Model. U.S. Unemployment Rate
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Figure 6.2.3 - Impulse Response Functions of Linear
Regimes from ESTAR Model - U.S. Unemployment Rate

3
Percentage s
! 1
2~ l’ ‘\
1 i : .
: N
! B \\ -
" AI Y
0 ! " s I'
) ' \\ ,/
\‘ ,’ _ ’
-1- ‘\‘ y’
50 100 150 200 250 s
F— Lower Regime ---- Upper RegimeJ

39



Figure 6.2.4. - U.S. Unemployment Rate and
Transition Function from ESTAR Model
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