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Abstract

This paper studies economies where agents exchange indivisible goods and money.
Agents have potential usefor all indivisible goods and the indivisiblegoods are differen-
tiated. We assume that agents have quasi-linear utilities in money, have sufficient money
endowments to afford any group of objects priced below their reservation values, have
reservation values which are submodular and satisfy the Cardinality Condition. This
Cardinality Condition requiresthat for each agent the marginal utility of an object only
depends on the number o objects to which it is added, not on their characteristics. Un-
der these assumptions, we show that the set of competitive equilibrium pricesis a non
empty lattice and that, in any equilibrium, the price o an object is between the social
value d the object and its value in its second best use.



1. INTRODUCTION

This paper considers economies where agents can buy and sell indivisible goods
and in which all payments are made in units of a divisiblegood that, following
standard use, we Vill call money. This model is probably closer to many circum-
stances o exchangein the real world than the standard model in which all goods
are assumed to be perfectly divisible, but is also more difficult to analyze. The
use of margina calculus is precluded, and the application o fixed point theo-
rems based on continuity properties, still possible in some cases, is certainly not
straightforward. In consequence the model has beer! studied under restrictive as-
sumptions, which are progressively being relaxed. Until recently it was assumed
either that all theindivisiblegoodswere al unitsof the same good (Henry (1970),
or that buyers had use only for one type of indivisible good (Kaneko-Yamamoto
(1986)), or just for one of the indivisiblegoods: this case covers most o the lit-
erature on assignment games and matching models (see Roth and Sotomayor for
a comprehensive account of the results) and competitive equilibria of economies
with indivisibilities (Kaneko (1982), Quinzii (1984), Gale (1984)). Recently sev-
era papers (Bikhchandani and Mamer (1994), Van der Laan, Talman and Yang
(1995), Gul and Stacchetti (1996)) have relaxed this assumption, and assumed
that agents have use for several units o the indivisible goods, units which may
be differentiated.

With the exception d Bikhchandani and Mamer (1994) who show that, if
there are two types of agents with quasilinear utilities such that al agents of the
same type have the same supermodular and increasing reservation values, a com-
petitive equilibrium exists, all the results of these papers follow from assumptions
o the agents demand functions rather than on their utility functions. Van der

Laan and Talman (1995) impose a condition on agents demands which seemsto



require separability d the utility functions with respect to the indivisible goods
but not quasi-linearity in money, while Gul and Stacchetti impose that the utili-
ties be quasi-linear in money and that the demands satisfy the property of Gross
Substituability (to be formally defined in Section 2) introduced by Kelso and
Crawford (1982) for a two-sided matching model between firms and workers. In
contrast, this paper studies a class of economies which is defined by restrictions
on the agents' utility functions. First, the utilities are quasi-linear in money so
that the preferences can be represented by reservation values for subsets of the
availableindivisibleobjects. Second, these reservation values are submodular i.e.
the marginal utility of an object decreaseswhen the set of objects to which it is
added becomeslarger. Last and not the least, this marginal utility depends only
on the number of objects and not on the composition of the set to which it is
added.

This last assumption, that we call the Cardinality Condition, is certainly
strong. At the momert however, it is the only interpretable condition that we
have found which precludes that, for at least one agent, some objects "fit" bet-
ter together than when they are associated with other objects—a situation which
seemsto cause nonexistenced an equilibrium even with decreasing marginal utili-
ties (seetheexampled non-existencein Section 2 or theonein Gul and Stacchetti
(1996)). Under the assumption that utilities are submodular and satisfy the Car-
dinality Condition we show that the set of equilibrium prices is non-empty, is a
convex complete | atti ce and thus admits a vector pM of maximum and a vector p,
of minimum equilibrium prices. Moreover these prices have a natural economic
interpretation: the maximum price p™(a) of an object a is the contribution of
this object to thesocial welfare, or its social value, whileits minimum price p, (a)

isits value in its second best use (these notions are precisely defined in Section



3).

The proofs of the papers follow the route of the Second Welfare Theorem
of Welfare Economics. we characterize the prices which support the efficient
assignments of the objects, and use very few properties of agents' demands. In
particular we do not use the property of Gross Substitutuability, which is the
basis for the proofs of similar results by Gul and Stacchetti (1996), although
this property is satisfied by the demands of agents whose utility functions satisfy
our assumptions. Our proofs are thus alternative proofs to those of Gul and
Stacchetti. Being based on the study dof the efficient assignments o the objects,
they uncover properties o these efficient assignments which are of interest in
themselves, and may be used to obtain results  comparative statics for this
class of economy (seein particular Lemma 3.3 which describes some regularities
of the efficient assignments when new objects are added to the available objects)

The paper is organized as follows: the modd and an example of nonexis-
tence o equilibrium motivating the Cardinality Condition is presented in Sec-
tion 2. The characterization of the prices supporting the efficient assignments
of economies with submodular utility functions satisfying the Cardinality Con-
dition is the subject o Section 3. Section 4 discusses the relation between the
Cardinality Condition and the property of Gross Substitutability of demands.

2. The Modd

Consider an exchange economy e with afiniteset | of agents (whoseelements are
denoted byi, j,...), afiniteset 2 of indivisibleobjects (whoseelements are denoted
by a,8,...), and a perfectly divisible good caled money. Agents preferences are
quasi-linear: the utility that agent i € | derivesfrom consuming aset of objects A

can be characterized by a reservation value V (i, A) which represents the quantity



of money that agent i is ready to sacrificein order to consume the objects in A.

The utility of agent i holding m units of money and the set A of objectsisthus
u,(A, m.-) = V('L,A) + my

For all 7 € I, the reservation value function V(z,.), defined on the power set
P(2), is assumed to be weakly increasing (V (i, A) < V(:,B) whenever A C B)
and to satisfy V(i,0) = 0.

Agents endowments, (A, 7 ier, with 7; > 0 and UsezA; = Q, are assumed
to besuch that m; > V(2,Q) for al z € I. This assumption implies that whenever
the price of aset A o objects is less than the reservation value V (i, A), agent 2
can afford to buy the objects in A.

Let £ denote the set o economies satisfying tl:» abnve conditions. .or an
economy e € £ an assignment a o objects to agents is thus a partition of the
objectsamong the agents. Let 3(1,2) denote al possibleassignments. A feasible
alocation o eisa pair (a,m) € 3(1,12) x R'ﬂ suchthat ) .., mi =5 /T

A Pareto optimal alocation is a feasibleallocation( a,m) such that there does
not exist any other feasible allocation weakly preferred by all agents and strictly
preferred by at least one agent. Of special interest in quasi-linear economies
in which endowments of money are such that the nonnegativity constraints on
money holdings never bind, are the Pareto optimal allocationsin which all agents
consumption d money is positive. These are the only Pareto optimal allocations
which can possibly be obtained as competitive equilibrium alocations. Asiswell
known, they are found by maximizing the sum of agents' utilities subject to the
feasibility constraints, In this model they are the feasible allocations associated

to the assignments which maximize the sum o the agents reservation values.



Such an assignment ¢, satisfying
> VGo@) 2} V(i m(@), vr € 2(1,9),
icl il

iscaled an efficient assignment.

Suppose that the objects are exchanged on a market at prices (p(a))acn-
(Pricesare expressed in units of money). If agent ¢ buys the set A o objects he
will pay p(A) = 3" 4ec 4 P(@). The demand o objects D(i,p) of agent i at the price
vector p = (p(a@))acn is defined by

D(i,p) ={A € P(Q) | V(i,A) — p(A) > V(i,B) — p(B),VB € P(2)}

The demand of agent i for money is then m; = m; + p(A4;) — p(A). This number
is dways non negative since, for A € D(i,p), V(i, A) — p(4) > 0 (the empty set
is dways a possible choice), and since by assumption 7z; > V(:,§). The price
vector p is a competitive equilibrium price vector if, for each i € |, there exists
A; € D(i,p) such that the map i + A, isan assignment. By Walras Law, this
condition, which ensures equilibrium on the market for the indivisible goods,
implies that the market for money is also in equilibrium. Thus a competitive

'f‘ such

equilibrium for the economy e can be defined as a pair (o,p) € L(I,2) xR
that o(i) € D(i,p) for al i € I. It is easy to check that, if (¢,p) is a competitive
equilibrium, then ais an efficient assignment. We say that an efficient assignment
i
+

o issupported by a price vector p € R if (a,p) is a competitive equilibrium.

Proposition 2.1. An economy e € £ has a competitive equilibrium if and only

if every efficient assignment a of e can be supported by a price vector.
/

Proof. If (o,p) is acompetitive equilibrium, by definition a issupported by p.

Suppose that 7 is another efficient assignment. Then

V(i,0(9) - plo(d) 2 V(i,7()) - p(1(2)), Vi e I.



The pair (7,p) is not an equilibrium if at least one of the inequalities is strict.
But then, summing the inequalities leads to
Y V(,0() —p(@) > Y V(7)) - p(€)
iel icl
which contradicts that 7 is efficient. Thus (r,p) is an equilibrium.
There exists a competitive equilibrium if and only if there is at least one
efficient assignment supported by a price vector. By the above reasoning, this

holds if and only if every efficient assignment is supported by a price vector.

The existence o an equilibrium is guaranteed (even without the assumption
o quasi-linearity of preferences) if the agents have utility for at most one object
(V(i,A) = maxqeqV(%,a)) ( Shapley-Shubik (1972), Kaneko (1982), Quinzii
(1984)) or if al objects are identical (V (¢, A) = V(i,|A}) (Henry (1970)). In the
case where agents can consume severa indivisible objects which are not perfect
substitutes for one another, an equilibrium exists, in the quasi-linear case that
we are considering, if the reservation value functions are additive (V (i, 4) =
Y acq V(i,@)). In thiscase it is efficient to give each object to the agent which
values it most, and the price vector p such that p(a) = max;er V(i,a) supports
such an assignment. The object o this paper is to study the case where the
objects are differentiated but where agents have use for more than one object. In
this case an equilibrium may not exist (Henry (1970), Bikchandani-Mamer (1996))
and additional restrictions must be placed on the reservation vaue functions.

A condition that seems particularly attractivesinceit expresses, in the case of
indivisible goods, theideathat the marginal utility of an additional item decreases
when the bundle of goods to which it is added gets larger, is the assumption o

submodularity.



Definition 2.2. A reservation value function is said to be submodular if it is
satisfies for all A,Bin P(Q2)

V(i,AUB) <V(i,A)+V(i,B) - V(i,AN B)
or equivaently
V(i,A) - V(,A\a) <V(i,B)-V(i,B\a), foralac BC A

Unfortunately this assumption is not sufficient to imply existence of an equi-
librium, as shown by the following example.

Example 1. Let e € £ be such that | = {1,2,3}, & = {a,5,7}. The
submodular reservation values o the agents for the different subsets of objects

are given in the following table

VNAA e | By |aB|ay|By]|aBy
V(1,4) | 10|82 {13 |11 ]9 |14
V(2,4)|8 |5]10]|13 |14 |13 |15
V3,A |1 |18 |2 9 |9 |10

The only efficient assignment a of objects in this economy is such that (1) =
B,0(2) = a,0(3) = y. Suppose that p supports this assignment. In order that
buying {af} is not better for agent 2 than buying only a, p must be such that
p(B) > 5. In order that buying no object is not better for agent 3 than buying
7, p must be such that p(y) < 8. In order that buying a is not better for agent
1 than buying 8, p must be such that p(a) > p(8) + 2. In order that buying
is not better for agent 2/than buying a, p must be such that p(y) > p(a) * 2.
Combining these inequalities gives 7 < 2+ p(8) < p(a)< p(y) — 2 < 6, which is
impossible.



Submodularity o the reservation valuesstill permits complicated interdepen-
dencein utility among objects, which may prevent the existence of an equilibrium.
In the previous example, if agent 2 has objects a and 3, then the marginal contri-
bution of aiisequa toitsvalue V(2,a) since V(2,a8) - V(2,) =13-5=8=
V(2,a), whileif objects a and «y are combined the marginal contribution of ais
much lower: V(2,ay) = V(2,7) = 14 - 10 < V(2,a). Thus, for agent 2, having
object 3 at the same time does not subtract any o the value o awhile having
lowers the desirability of a.

A sufficient condition which ensures that the interdependence among objects
isweak and that guarantees the existence of an equilibrium is that the demands
o all agents satisfy the Gross Substitute (GS) assumption introduced by Kelso-
Crawford (1982). Heuristically the demand of agent i satisfies the GS condition
if, when the price o an object —let us say  —increases while the prices of all
other objects stay the same, then the objects other than g which were demanded
by agent ¢ are still demanded by this agent. This impliesthat there is no object
which was demanded by agent ¢ because it "fitted" especially wdl with 5, but is
no longer desirable when 3 becomes too expensive. To state the formal definition
o the GS property, let us adopt the following convention: we say that the object
ain thedemand of agent ¢ at pricespif it belongsto at least one subset df objects

demanded by agent i at p.
a € D(i,p) © a€ A for some A € D(i,p)

Definition 2.3. The demand of agent i satisfiesthe Gross Substitute property
if forany pe R, and any p € R, p > p, with p(a) = p(a) for some a € Q,

then a€ D(i,p) implies a € D(z, p).

The Gross Substitute property however is not a condition on the primitive



characteristics of the economy (the utility functions V (z,-)) but a condition on
the derived demand functions (or more accurately demand correspondences). In
this paper we will study a condition in the same spirit, which is stronger, but
is made directly on the utility functions. The "Cardinality Condition" that we
impose requires that the marginal contribution of an object only depends on the
number o objects to which it is added. This condition prevent interactions in
utilities among objects—Ilike objects a and g fitting especialy wel together—

which create problems for the existence of equilibrium.

Definition 2.4. The utility function! V(z,-) satisfies the Cardinality Condition
if the marginal contribution of an object to agent i's utility depends only on
the number of objects to which it is added, i.e., for dl A,B € P(§2) such tLat
|A|=|Blanda€e ANB

V(i,A) - V(5, A\a) = V(i, B) — V(3, B\a)

Assumption C' makes sense only for indivisible objects which have the same
function, since otherwise the marginal utility o an object for an agent depends on
the composition of theset of objectsto whichiit isadded, not just onitscardinality
(in particular it depends on whether or not the agent already possesses an object
performing the samefunction). However if there areindivisible objects of different
nature and if the utility of the agents are additive between groups of objects
o different nature, then each group of objects can be attributed (auctioned,
sold) separately. Under the separability assumption, it issufficient to study "two
good" economies with n%oney and indivisible objects which are all of the same
nature. The model studied in this paper generalizes, in the quasi-linear case
the two-good model studied by Henry (1770) to the case where the indivisible

objects are differentiated. An example of such objects could be paintings—or



more generally art objects— collected by agents for purpose of decoration. The
objects typically have different "esthetic values" for different agents, and if the
agents are more sensitive to the effect of each object than to the general effect
that a group o objects produce together, then the Cardinality Condition can be a
reasonable approximation. Theassumption that the agents' reservation valuesare
submodular seems also reasonable in this case, unless some agents are obsessive
collectors.

In the following section we prove that if the utility functions are submodular
and satisfy the Cardinality Condition, the set of equilibrium prices has the lattice
property found in the matching modd:; with quasi-linear utilities. Thus if pM(a)
is the maximum value o object afor any equilibrium and p,,(a) its lowest value
in any equilibrium, then the vectors p™ and p,, are also equilibrium prices. Of
course p™ is the vector o equilibrium prices which is the most favorable for the
sellers and p,,, the most favorable for the buyers. Moreover the prices p™ and p,,
have a natural economic interpretation: p™ (a) is the socia surplus created by
object a (to be precisely defined in Section 3) while p,,(a) isthe vaue d ain its
second best use (also to be defined in Section 3).

Similar properties of the equilibrium prices have been independently derived
in a recent paper by Gul and Stacchetti (1996) under the assumption that the
demands of al agents satisfy the Gross Substitute property. However the proofs
aredifferentin nature from the proofs o this paper. In the quasi-linear economies
with large endowments of money that we are considering the existence of equilib-
rium and the Second Theorem o Welfare economics (Pareto optimal allocations
maximizing the sum of agents’ utilities can be supported by prices) are equiva-
lent, since the equilibrium prices do not depend on the income distribution (see

Proposition 2.1). While Stacchetti and Gul call on the properties o the agents

10



demand functions to prove existence of an equilibrium and derive the properties
of equilibrium prices, the analysis of this paper follows the route of the second
Theorem of Welfare economics and shows that the prices pM and p™ as wdl as
a convex, complete lattice of intermediate prices support the efficient allocations

o the objects among the agents.

3 Equilibrium Prices

3.1. Definition of p™ and p,,

The analysis of this section is made under the following set of assumptions on the

utility functions which will not be repeated

ASSUMPTION : For dl 7 € I, the utility function V(z,-) is submodular and
satisfy the Cardinality Condition

Let a be an efficient assignment o the objects €2 to the | agents. The goa
o thissection is to derive the prices supporting this allocation o the objects. In
a model with divisible goods and quasi-linear utilities, the prices supporting a
Pareto optimal alocation are given by the multipliers associated to the scarcity
constraints in the program o maximization of the sum o the utilities (social
welfare) subject to the feasibility constraints. The envelope theorem then permit
interpreting the multiplier associated to the scarcity constraint for agood (let us
say good a) asthe change in social welfare resulting from a marginal decrease or
increase in the supply of this good. Suppose now that good a is indivisible and
exists in a single unit. If/we proceed by analogy, there are two changes in the
supply o awhich play the role & a marginal change in the supply o a when the
good is divisible: the supply can be decreased by one unit by taking the good a
out of the available supply o goods; or the supply can be increased by one unit

11



by adding a copy of a to the supply of available goods. These changes induce
changes in social welfare analogous to the changes in social welfare accompanying
a marginal change in the supply o a divisible good. We will prove that these
changes in social welfare define the maximum and minimum prices supporting
the efficient allocation o.

Let us thus define the socia welfare created by a supply €2 of objects by

U) = V(i (i)), forany efficient assgnment o of 2
iel
Define pM as the change in social welfare when the object a is taken out of

the available objects, i.e.
pM(@) =U(Q) - U(®\a), ~<€Q

or alternatively as the contribution of a to the social welfare. To define the
minimum prices, for all a € Q let @ denote an exact copy of object a. To define
the social welfare associated to 2 U &, we need to extend the utility functions to
subsets of £2 U & containing both aand @. The extension is made in the following
way: if Aisasubset of QU a such that a€ A, @ € A, then V(i,A) = V(i, A\a).
Thus no agent benefits from having two copies o the same object. With this
convention, there is always an efficient assignment of 2 U & which does not give
a and & to the same agent (even if only one agent has any use for a, as long
as we assume free disposal). In al that follows, we will only consider efficient
assignments p of 2U & such that p(i) € Q. In the norma case where several
agents have a positive utiIi/ty for a, an. efficient allocation of 2 U a defines the
second best use o a, since it becomes possible to give a to the agent i who has
it in an efficient allocation o €2, and to give a copy to the agent who would most

benefit from a after agent i (see the Remark after Lemma 3.3). If we define

12



Pmla) =UQUE) - U(Q), a €N

we can interpret p,(a) as the social value o a in its second best use. Define
M = (pM(a))acn and pm = (Pm(Q))acn. We first show that pM(a) and pp,(a)
give respectively the highest and lowest possible equilibrium pricesfor object a.

Proposition 3.1. Let a be an efficient assignment of €2, and suppose that there
existsp e R'f' supporting theassignmento. Thenforall a € Q, U(QUa)-U(R?) <
pla) S UQ) —U®\a).

Proof. Sincethe vector pissupporting the assignment a,for ali € |,and for al
A€ P(Q), V(i,0(i)) — p(a(s)) > Vi, A) — p(4). In particular, givena € Q, lei 7
be an efficient assignment o Q\a among |, and let p be an efficient assignment of
QQUa. Asnoted above, assume w.l.o.g. that p(i) € Qfor ali. Then, V(z,0(2)) —
p(o(i)) 2 V{i,7(i)) — p(r(¥)) and V(i,o(d)) — plo(d)) 2 V(i p(i)) — p(p(:)) for
al i € |I. Summing up this inequalities, we get U(Q?) — p(a) > U(Q\e) and
UuQ)>Uu(Qua) -pla).l

The next two lemmas will be frequently used in proving that p™ and p,, are

equilibrium price vectors.

Lemma3.2. Let a and # be two objects in 2 and let C and D be two subsets
o Q such that {a,8} NC=0and {a,8} ND=0. Then for alli € I
V(i,CUa)-V(E,CUup)=V(E,DUa)—V(i,DUP)
;
Proof. Suppose first that |C] = |D]. Then by the cardinality condition
V(i,CUa)-V(E,C) = V(i,DUa)-V(i,D)
V(E,CuB)-V(E,C) = V(i,Dup)—V(i,D)

13



Subtracting the second equality from thefirst gives the result. Suppose now that
[C| =|D| - 1. Then |CUa| =|CU S| =|D|. The cardinality condition then
implies
V(ECUaUpf)-V(E,CUa) = V(i,DUB)-V(i,D)
V(ECUaul8)-V(3ECUB) = V(E,DUa) - V(i,D)

Subtracting the second inequality from the first gives the result. Suppose that
|C| = |D| - 2. Then consider asubset D" C D such that |C| = |D’] — 1. Applying

twice the previous step gives
V(i,CUa)-V(i,CUB) =V (i,D'Ua)-V(i,D'UB) = V(i,DUa)—V (i, DUB)

Thus the property holds if |C| < |DJ. Since C and D play asymmetrical role,
the property holds for all subsets C and D which do not contain « or 3. B

Lemma 3.3. Let a be an efficient assignment of §2 to theagents. Forany a € 2
there is an efficient assignment 7 of 2\« and an efficient assignment p of QU &
such that |7(z)] < |o(2)] < |p(z)| for al i € |. Moreover p can be constructed such

that the agent who has a in the assignment a also hasit in the assignment p.

Proof. Step 1: Let 7 be an efficient assignment of @\« among | . Partition the

set | of agents between the subsets

L={ielllr@I>le@l}, | ={iel 7@l =lo@)I}, Ii={icl|lr@)] <lo(@)}

and suppose that I, is not empty, that is for somei € I,|7(:)| > |o(i)| . Choose
an agent i € I;, There exist 3 € 7(¢) such that 8 € o(j) for some agent j #1i.
Suppose first that j € I3, i.e.|7(7)] < lo(j)]. Consider a new assignment

T*where agent j gets 7(j) U B and agent i gets 7(¢)\B. Since [r(j)| < lo(H)l,

14



l7(5) UB| < |o(5)], then by submodularity and Assumption C we obtain that

VG, 7()VB) -V (4,7(43) 2 V(,0(5)) - V(5,0(5)\B)

Since a is an efficient assignment of £2 among |,

V(5,0(5) = V(5,0()\B) 2 V(i,0(i) U B) — V(5,0(i))

Since lo(3)] < |7(3)], |o(z) UBI < |7(2)], and by submodularity and Assumption
C,
V(i,a(®)U B) - V(i,0(d) =2 V(i,7(3)) - V(i,7(i)\B)

Therefore,

V(G UB) -V, 7(4) 2 V(E, () - V(E 7(0)\B)

which proves that the new assignment of Q\a isasefficient asi-. If the inequality
is strict, this is a contradiction with the fact that 7 is an efficient assignment of
0\ a among | . Thus there must be equality, and the new assignment 7* obtained
by shifting B from agent i to agent | is an efficient assignment of Ra among |
which has decreased by one the number of objects attributed to the agents of 3.

Suppose now that |7(5)| > lo(4)], that is j € I; U I;. Then there exists an
object £ in 7(j) which is not in o(j) and is thus in o(j;) for some agent ji-
For symmetry d notation call jo the agent who has 8 under a (j = jo) and call
B = Bo. If j1 isin I3 then consider the assignment 7* obtained by transferring
Bo to agent jo and B1 to agent ji. If agent jiisin I U Iz, then continue the
procedure by finding an ‘object B in 7(j;) which is not in ¢(j;) and is thusin
a(j2) for some agent jo---until an agent of I3 is reached. If the same agent in
I, U I is selected at several stage of the procedure always choose a new object,
so that By # B # B2 # - --. Thisis possiblesince for these agents |7(i)| > |o(3)|

15



so that each object which is attributed to ¢ under a and not under T has been
replaced by a new object. Since I3 is non empty, (there are less objects in Q\«
than in &) after a finite number o steps the procedure must stop by reaching
an agent ji in I3. Consider the assignment 7*obtained by transferring Gp from
7 to jo, B1 from jo to j1,- .-, B tO jx. Note that without loss of generality we
can assume that the agents jo, J1, ..., jx are al different. For if the same agent is
chosen at differentstage of the procedure, i.e. if,for £ >0, r > 1, j¢ = je4r, then
it is possibleto choosedirectly the object Gpi.41 instead o Gery in 7(j,) the first
time that agent 7, is reached, avoiding the cycle je¢, 7e+1, - - -, Jjesr- L€t US ShOW
that the assignment 7+ is efficient. Applying Lemma 3.2 with C = 7(j¢)\Bes1
and D = o(jg)\Be gives for agents jo, ..., Jk-1

V(e 7(5e)\Ber1 U Be) — V(je, 7(Je)) = V (e, 0(Je)) — V (je, 0 (7e)\Be U Bes1)
For agent i, since |7()| > |o(2)], by the cardinality condition
V(,0())UDg) - V(3,0()) 2 V (5, 7(i) - V(i, 7(i)\Bo)
and for agent jx, since |7(ji)| < o ()]
V (e, 7(5k) U Br) = V(ik, (k) 2 V(k, 9 (k) = V(Ik, 0 (36)\Br)
Adding up these equalities and inequalities leads to

V(& 7(E)\Bo) + V (o, 7(j0)\B1 U Bo) + - .. + V (jk, T(jx) U B)]

= [V, 7)) + Vo, 7(Jo)) + - - - + V (i, T(Gi))]

(V(i,0() + V(o,a(jo)) + - + V(jk, o (k)]

— [V (5,0(i) U o) + V(jo, o (jo)\Bo U Br) + .. + V (jk, o (4k)\Br)]
0

v

v



where the last inequality is implied by the efficiency of a

Thus as long as an efficient assignment 7 of 2\« issuch that I; is not empty
it is possible to construct another efficient assignment 7* with one less object
attributed to the agents of I; and one more to the agents of I3. In a finite
number of such steps we must find and efficient assignment 7 of Q\« such that
I isempty.

Step 2. Consider now an efficient assignment p of 2 U @ and partition the set

| into

Si={ielllo@)| > p@)}, J2={ielllo@)]=p@)}, Js={icllo(@)] <lp()}

If Ji is non empty, choose an agent ¢ in J;. Thereis an object By which is
in o(z) and not in p(2), thus which isin p(jp) for some agent jg. If jo isin Js,
transfer Go from agent jo to agent < and stop there. If agent jo isin J, U Js
there is an object 3; which isin o(jp) and in p(5;) for some agent j; different
from jo. Transfer 8y from j; to jo and continue the procedure until an agent of
Js is reached which has to happen since the objects 3y, 51, ... can be chosen to
be different and some objects must belong to agents of J3 which is a hon empty
set. The same type o equalities/inequalities as in Step 1 show that the new
assignment of 2 U & so obtained is efficient and gives one more object to the
agents of J;. Transferring objects to these #gents must lead in a finite number of
step to an efficient allocation d QU a for which the set Jy is empty.

Step 3 Let p be an efficient assignment o 2 U &, which, by Step 2, can be
chosen such that |p(¢)| > |o(é)] for al i (and aso such that p(i) € Q2 for al i).
Let 7 be the agent who has a under a. Suppose that 7 does not have a under p.
Then, since |p(i)| > |o(3)| there exists an object 3 in p(i) which is not in o(7)

and isthusin o(3;) for some agent ;. If a (or &) € p(i;) then exchange a and 3,
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ie. givea (or &) tosand f to 4. By Lemma 3.2 (with C = p(i)\B, D = o(i)\a
for agent 7, C = p(i1)\e, D' = o(31)\B for agent i;) |

V@EpO\BUQ) - V(i,p@) = V(i,0() - VG0o()UB\e)
V(in, p(in) UB\G) = V(ir, p(i1)) = V(i,000)) - Vi(iz,0(i)\A U a)

Adding this equalities and exploiting the optimality of a leads to

V(i,p()\BU @) + V(i1 p(ir) U B\a) 2 V(i, p(2)) + V (i1, p(d

—
N
—

so that the new assignment is as efficient as p. 1

If « ¢ p(71) continue following the objects which are assigned in the assignment
p differently than in a: there exists 8, in p(i;) which is not in o(z;) and thus
whichisin o(iz) for o # 7;. Either aisin p(iz) in which case the procedure stops,

or thereexists 3 in p(i2) and not in o (i), sothat By isin o(i3) ... Notethat even

if the same agent is selected several times, the objects 3, 61, 52, . .. cérn be chosen
to be different since, each time an object isin (i) and not in p(7) foﬂ‘ some agent
i it must have been replaced by a different object. Sincethere are aﬁ#lite number
o different objects, at some point an agent 7, must be reached sucfl that a (or
&) isin p(i,m). Then replace 3 by a for agent 7, 8; by G for agent 41, ..., a by
Bm—1 for agent i,,,. Asexplained in Step 1 ihe procedure can aways/be modified

so that agentsi, 41, ...,in are al different. The same type of equalities than in

the ssimple case where m = 1 considered above, combined with the optimality of

o, implies that the assignment so obtained is as efficient as p. B

Remark 1. The property proved in Step 3, namely that the ag%nt 1 who is
assigned a under a also receives a under p, justifies the interpretath‘on of pr(a)

as the value of a in itssecond best use p attributes the object a t% the agent 2
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who hasit under o and attributes the second copy of a to the agent who, after
i, would benefit most of consuming a— perhaps after a reallocation of the other

objects.

We now provethat p™ and pn, are equilibrium prices supporting the efficient
alocations o the objects R.
3.2. pM supportsthe efficient assignmentsof Q to |

Lemma 3.4. Let a be an efficient assignment of 2 among | . For dl 7 € |
(i) if a € o(3), then pM(a) < V(i,0(2)) — V(i,0(i)\a)
(i) if 8¢ o(i) then pM(8) >V (i a(i B) - V(i,a(i))

Proof. (i) Let a € o(i), then U(0\a) > 3~ c; 5., V(4,0(5)) +V (3,0(i)\a). Since
pM(a) =U(Q) - U(Q\e),

pM(@) <D VGeG)- D V(,0()-Vio(i)\a) = V(i,0()-V(E,0()\a)

jel jEI j#i
(i) Let B ¢ (i), and suppose that

pM(B) = U(Q) ~ U(Q\B) < V(4,0(:) UB) — V(i,0(2))

then,

UQ) <U@Q\B) T V(5,03G)UB) - V(i,o())

By Lemma 3.3 there exists an assignment, 7, o Q\f# among | such that

I7(3)] < |o(3)}, and by submodularity and Assumption C
V(i,o()UB) - V(E,0()) < V(ETE) UB) - V(i,7(1))

Then,
U@ <U@\B) T V(3,76 up) - V(i,T() | U(Q)
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which is a contradiction. &

Lemma35. For al ¢ € 1, thereis A € P() such that |A| = |o(¢)] and
A€ D(i,pM).

Proof. (a) Suppose that there is B € D(i,pM) such that |B| < |o(i)|. From
part (i)of Lemma 34 we know that pM(a) < V(i,a(i)) — V(5,0(:i)\a) for al
a € o(i). Since |B| < |a(3)}, if a ¢ B, pM(a) < V(i,Bua) - V(i,B) so that
Bua € D(i,pM). Following this process, we can add elements to B and obtain
aset B* such that |B*| = |o(i)| and B* € D(i,pM).

(b)Suppose that thereis B € D(i,p™) such that |B| > |o(3)|. Then by part (ii) of
Lemma3.4we know that for dl 8 € Bsuchthat 8 ¢ o(3), pM(8) > V(3,0(:)UB)—
V(i,0(:)). Thisimplies, since |B| > |o(i)|, that p*'(3) > V(i, B) — V(3, B\B).
Since B € D(i,pM), it must be that pM(B) = V (i, B) — V(i, B\B), so that
B\B € D(i,pM). Following this process, we can subtract elements from B and

obtain aset B* such that |B*| = |o(3)| and B* € D(i,p™). B

Theorem 3.6. If a is an efficient assignment of Q among |, then p™ supports

o.

Proof: In order to provethe theorem, we must prove that if o is an efficient
assignment o the objects, then for all i € 1,0(i) € D(i,pM). By Lemma 3.5,
there exist A € D(i,pM) such that |A] = |o(i)]. Suppose that A # o(¢). Then
there exists 8 € o(¢) such that 3 ¢ A and thereisa € Asuch that a ¢ o(z). Let
us show that Au B\e isasoin D(i,p™).

Suppose this is not true. Then it must be that V (i, A) — pM(A4) > V(i, AU
B\a) _ pM(AU B\a), which is equivalent to pM(B) — pM(a) > V(i,AU B\a) -
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V(i,A). By Lemma 32 (with C = A\a and D = o(#)\3) thisis equivaent to

U(\a) = U(NG) > V(5,0(i)) = V(i,0(i) U a\B) 3.1)

To show that hisinequality is impossible, consider an efficient assignment 7
o Ra such that |7(3)| < |o(j)| for dl.j € |. By Lemma 3.3 such an assignment
exists. In order to contradict inequality (3.1) we construct an assignment of
Q\@ from T by removing the object S from the agent who has it under r and
"appropriately" assigning the object a.

Consider the agent j; who receives 8 under 7. If j; =i, then take g from
agent i and replace it by o. If j; # i then since 8 € 7(j1) and 8 ¢ o(5;), and
since |7(j1)] < |o(41)], there is an object B; in o(j;) which is not in 7(j;). If this
object is either a or issuch that it belongs to (), then the procedure stops: in
the first case replace 8 by a in the assignment o agent j;, in the second replace
B by 51 for agent j; and replace 51 by o for agent i. If 8, cannot be either a or
an object of 7(i), then there exists an agent j; such that 8; € 7(jo). By the same
reasoning , since A1 4 o(jz2) there exist an object B, in o(j2) which is not in 7(jz2).
If either this object isaor if it belongsto 7(z), then procedure stops by replacing
B by ) for agent j1, and 51 by a for agent jz in the first case,by (32 in the second
case and (32 by a for agent i; otherwise it continues. As long as the procedure
continues the objects 31,82, -.., can 'be chosen so as to be different from each
other since each time that an object in 7(j) and not in o(3), since |7(7)| < |o(4)I,
there is a corresponding object in o(j). Since there is a finite number of objects
the procedure must end finding an agent j., such that there exists an object 3, in
o(jm) Which is either aor is such that Bm € 7(4). in the first case consider the
assignment of $2\3 such that 3 is repllaced by 3, for agent j1, £; is replaced by
B2 for agent jo,..., and Bn-1 isreplaced t o for agent | In the second case

3 is replaced by £ for agent 7, 1 is replaced by B for agent j2,..., Bm_1 IS
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replaced by (.. for agent jm» and (B is replaced by a for agent i. Note that the
agents 71,...,Jm Can be chosen so as to be different from each other“ since, if the
same agent j¢ is chosen twice, i.e. if forsomef > 1, r > 1, j, = jei -, then the
object B¢, can directly be chosenin o(j¢) instead of 3, the first tirJ; that agent
Je isselected. We now use the assignment just constructed to find|a bound on
the differencelU (\a) — U($2\B). Consider the first case where 3,,, J: a

U a)-U\B) < V(i1,7(51)) = Vi, 7(G)\BU B1)
+V (2, 7(j2)) — V(j2, 7(2)\B1 U B2)
+...
+V (Gm, T(m)) =V (Gms T(Gm)\Brm-1 L, @)

By Lemma 3.2 (with C = 7(j¢)\Be—1 and D = 0(jg)\Be for £ =1, .. |,m )

UQ/a) —UO\B) < V(,o(G)\AUPB) -V (j1,o(1))
+V (J2,0(52)\B2 U B1) — V(j2,0(42))
+...

+V (I, 0(m)\@ U Brm—1) = V(jm,o(fm))

By the efficiency of the assignment a

V(i,o(i)) + V(j1,001) + -+ V(im,0(m)) 2 V(i,0() Ue\G)
’ +V (1, o(i)\B U B) T . -

+V (s 0 () \x U D - )

which, combined with the previous inequality implies
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U(Qfe) -U@\B) <V(5,0(i)) - V(i 0()\BU a)

and contradicts (3.1). The proof for the case 8,, € 7(z) issimilar and left to the
reader. Note that it covers, with m = 0, the case where 8 € 7(3).

Thus inequality (3.1)is impossibleso that if A € D(i,p™) is different from
o(1) then each object of A whichisnot in () can be replaced by a corresponding
object o o(z) and the new subset obtained in this way is still in the demand of
A. After afinite number of such replacements the subset () will be obtained,
so that o(i) € D(i,p™). R

3.3. p» supports the efficient assignmentsof Q to |

Lemma 3.7. Let a be an efficient assignment of 2 among | . For all i € |
(i) if a€ o(d), then pm(a) < V(3,0(i)) - V(i,0(i)\a)
(ii) it B ¢ o (1), then p.a(B) 2 V(i,0(i) UB) - V(3,0(s))
Proof. (i) Since we have proved that pM is an equilibrium price, Proposition
3.1 implies that p, < pM. Since, by Lemma 3.4, pM satisfies the inequality (i),
so does pyy, -

(i) If B ¢ o(3), adding B to the objects of i creates an assignment & QU S.
Thus U(QU B) > U(Q) - V(i,0(:)) + V(i,0(:) U B), which is equivalent to the
inequality in (ii). B

Lemma 3.8. For al i € |, there is A € P(R2) such that |A| = |o(3)| and
A € D(3,pm)-

Proof. The proof isidentical to the proof of Lemma 3.5.
Theorem 3.9. If o isan efficient assignment of 2 among | , then p,,, supportsa.
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Proof. We must prove that for all i, o(¢) € D(%,p,,). ByLemma3.8, there
exists A in the demand d agent i such that |A| = |o(z)]. Let us show that if
A # (i), then every object « in A and not in o(¢) can be replaced by an object
Bino(i) and not in A, sothat AU B\« isin the demand of agent i. By the same
reasoning than in the proof of Theorem 3.6, if AU S\« were not in the demand

of agent i, then the following inequality would have to hold
UQUB) -UQUa) > V(i,o() — V(i,0(i) Ua\f) (3.2)

To show that this equality is impossible, choose an efficient assignment p o
QU S such that p(7) € Q, lp(H)| = lo(5)], for Al 5 € I and such that 3 € p(i). By
Lemma 3.3 such an assignment exists. There are two possible cases:

Case 1 passigns 3 and not a to agent i. Then considers the assigr.ment of

QU & obtained in replacing 3 by cr.
U(Qua) > UQUB)-V (i, p(4))+V (i, p(i)\BUa) = U(QUB) -V (3,0 (i))+V (i,0(:)\BUa)

where the last equality follows from Lemma 3.2 with C = p(i)\3, D = a(i)\S.
This contradicts inequality (3.2).

Case 2. passigns3 and o to agent i. Let 5 be the agent who receives o under
o, and let k be the agent who receives the copy B o B under p. If j =K, then
take 8 from agent j and replaceit by 6.

U(QUB) ~U(QUE) < V{5, p() -V (4, p(7) Ue\B) = V (j, 0 (j)UB\@) =V (j, 0 (1))

where the last equality followsfrom Lemma3.2 with C = p(j)\8 and D = o(j)\a.
7
By efficiency o the assignment a,

V(5,0(i) UB\a) = V(j,0(j)) S V(i,0(i)) - V(i,0()) Ua\B)
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This contradicts inequality (3.2). If j # %, then since a € o(j), a ¢ p(j), and
lp(5)] = lo(3)], there is an object Bo in p(§) which is not in o(j). If this object
Bo belongsto a(k) or o(), then the procedure stops: in the first case replace
by & for agent 7, and replace by By for agent k. In the second case replace
Bo by a for agent j, and replace 3 by Bo for agent i. If B is neither in o (k) nor
in o(z), then there is an agent j; such that By € o(j,). By the same reasoning,
since o ¢ p(j1), and |p(j1)| > lo(41)!, there is an object B; in p(j1) which is
not in o(j1). If $1 belongsto o(k) or (), then the procedure stops by replacing
Bo by & for agent j, B1 by Bo for agent ji, and B py B for agent k in the first
case, and 8 by (; for agent i in the second case; otherwise it continues. As
long as the procedure continues the objects 5, f,...., can be chosen so as to be
different from each other since each time that an object in o(l) is not in p(i),
and since [p(l)| > |o(l)|, there is a corresponding object in p(l). Since there is a
finite number of objects the procedure must end finding an agent j,, such that
B € p(jm), and Bm ¢ 0(jm), and such that By, isin o(k) or o(3). In thefirst case
consider the assignment of QU & such that Gy is replaced by a for agent j, 51 is
replaced by Bp for agent j1, B2 is replaced by 3, for agent jo, ....., Bm IS replaced
by Bm—y for agent j,., and B is replaced by 3,, for agent k. In the second case
Bo is replaced by a for agent j, 81 is replaced by 5y for agent j;, B2 is replaced
by 8, for agent jo, ....., Bm is replaced by 3,1 for agent j,., and 8 is replaced by
Bm for agent i. Note that, asin the proofs of Lemma 3.3 and Theorem 3.6, we
can assume w.l.o.g. that the agents ji,...,Jm are dl different.

We now use the a.ssign/ment just constructed to find a bound on the difference

U(OU B) — U(OUB). Consider the case where B, € ().

UQUP) -UQUa) < V(j,p(G)) — V(i p(G) Ua\bo)
+V (41, p(51)) = V (41, p(51) U Bo\B1)
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+... ‘
Y (ons£G)) = V (i 2(i) U Brnt-1\r)
+V (i, 0(8) = V5, p() U Bn\B)

By Lemma 3.2 (with C = p(51)\G and D = o(51)\Bi-1 for | = 0,1
Jo = J, and Bo-1=a,and C' = p(i)\B, D' = o(3)\B\Bm Ua)

s ..., 0 where

UQUB) -U@QUa) < V(j,0()Ub\e) - V(j,0(j)
FV (i1, 0(1) U B\Bo) — V(is, 0 ()
+...
+V (s 0 () U B \Brn1) = V (jmy 7 (jm))
+V(E,0(@) Ua\fm) — V(i,0(2))
WVG,o(i) - Vo Ua\d)
By the efficiency of the assignment a
V(,0(5) + o+ V(im,0(m) + V(G0() = |

V(5,0(5)UBo\a) + ... + V(im,0(Gm) U B \Bm-1) + V(2,0 (i) U a\Brm)

which, combined with the previous inequality implies
U(QUB) - U(QUE) < V(5,0(2) - V(i,0(i) Ua\B) |

and contradicts inequality (3.2). Thus (3.2) isimpossible so that if +4 € D(¢,pm)
is different from o(z) then each object o A which is not in o(z) c# be replaced
by a corresponding object of o(z), and the new subset obtained in thﬁs way isstill
in the demand o A. After/afinite number of such replacements th% subset o(7)
will be obtained, so that o(¢) € D(¢,pm). The case where 5, belo*lg to o(k) is
similar and left to the reader. B |



3.4. The lattice structure of equilibrium prices

Theorem 3.10. Theset of prices supporting the efficient assgnments of 2 isa

convex, complete lattice.

Proof. Theset of prices supporting an efficient assignment o of € isthe set of
solutionsto the linear inequalities V(3,0(i)) —p(o(i)) > V(i,A) —p(4), VAcQ
and is thus closed and convex. To prove the theorem, we thus only need to prove
that if p and p’ are two prices supporting an efficient assignment a o 2 then
pAp and pVp, defined by p A p'(a) = min{p(a),p'(a)) and pVp'(a) =
max{p(a),p’ (a)) for al a € ), also support a This amounss to showing that
o(i) € D(i,p Ap") and o(2) € D(i,'p'\'/p’) for al i € I. First note that since, by
Proposition 3.1, p, < pAp <pVvp <pM theinequalities (i) and (ii) of Lemma
34 or 3.7aresatisfied by pAp’ and pVvyp'. By the same reasoning asin Lemma 3.5,
thisimplies that, for al i there exist A4; in D(i,pAp’) and A} in D(i,pV p) such
that |Ai] = |Al| = |o(2)|. Suppose that, for some agent i, A; # o(i). Then there
exists a such that a € A; and « ¢ o(#), and there exists 3 such that 8 € o(i) and
B ¢ A, Let usshow that A\e U isasoin D(i,pAp). By Lemma 3.2 (with
C = A\a and D = o(4)\B) and the fact that p and p’ support a

V(Z, Ai\a U ﬁ) - V(Zv Al) = V(’Lv 0’(7,)) - V(Z>U(7’)\ﬁ U a)

> max{p(a) - p(B),p'(a) — P'(8)}

> max{pVp'(a)—pVp(B),pVr(a)-pvr (@)}
where the last inequality can easily be checked case by case. Thus the objects of
A; which are not in o(if can be replaced by objects of (), which proves that
o(i) € D(i,pAp). The same reasoning applied to A} showsthat o(i) € D(z,pVp').
Thus the set of prices supporting the assignment a is a lattice, and being closed,

it iscomplete. &

27




Note that choosing pricesindependently for each object a between pM™ () and
Pm () does not generally lead to a vector of equilibrium prices, as shown by the

following example:

Example 3.11. : Let e € £ besuch that | = {1,2,3}, Q@ = {a,8,7}. The
reservation values of the agents for the different subsets of objects are given in

the following table:

VA |alB|7]|af|ay|pBy|aby
V(1,A) |8 198 |16 |15 |16 |22
V(2,A) |3|7]|6]9 |8 |12 |13
V3,A) |5 4|78 |11]10]13

For this economy the efficient assignment is o(1) = {af8},0(2) = 8,0(3) ={y).

The vectors p™ and p,, are
pM = (77 8) 7)) Pm = (4> 77 6)

The price vector p = (4,7,7) however is not an equilibrium price vector since
at these prices agent 3 would demand object a and not object y. The prices d
objects need to be compatible: in particular the surplus o agent 3 on object
v has to be as least as large as on objects a. The set o equilibrium prices is
{(4+¢,7,p(1))16 < p(7) < min(6+¢,7)),0<e < 3}

4. Relation between the Cardinality Condition and Gross Substi-
tutability ;

We mentioned in the Introduction and in Section 2 that, for submodular reserva-

tion values, the Cardinality Condition implies that agents demands satisfy the
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Gross Substitute property. We now formally prove thisclaim. The proof usesthe
following properties of agents demands when their reservation value functions

satisfy submodularity and the Cardinality Condition.

Lemma 4.1. Suppose that thereservation vaue V (3, ) of agent i issubmodular
and satisfies the Cardinality Condition. Then

(i) If Aand B are two subsets of D(z,p), and if |B] < |A|, then for every a
such thata e A a ¢ B, then Bua isin D(i,p)

(ii) If pand p are two vectorsof pricessuch that p > p, if Aisa subset of
D(i,p) of maximum cardinality, then for al B € D(i,7'), |B| < |Al-

Proof. (i) |B| < |A] implies |[BU a| < |A| so that V(;,Bua)-V(:,B) >
V(i, A) - V(i, A\a) > p(a), where the last inequaiity comes from the fact that
A € D(i,p). Thus the surplus of agent i with the objects of BU a is at least as
large as with the objects of B, so that BU a € D(i,p).

(ii) Suppose |B| > |A|. Then there exists 8 such that 8 € B,3 ¢ A. Since
|AUB| < |B|,V(i,AUB) — V (i,A) 2 V(i, B\) - V(i, B) = ¥'(B) 2 p(B). Thus
AU g isin D(i,p), which contradicts the assumption that A has the maximum

number of elements among the subsets of D(i,p). &

Proposition 4.2. Suppose that the reservation vaue V' (z,-) of agent i is sub-
modular and satisfies the Cardinality Condition. Then agent i’ s demand satisfies
the Gross Substitute property.

Proof. Let p’ beaprice vector such tlhat p’ > p and let a be an element of D(<, p)
such that p(a) = p' (a).By Lemma 4.1 (i), there is a subset |A] of maximum
cardinality among the subsets of D(i,p) such that a € A. Let B € D(i,p').By
Lemma 4.1 (ii), |B| < |A]. If a ¢ B and |B| <|A|, then V(:,Bua)- V(i,B) >



V(,A) - V(i,A\a) > p(a) = p(a), so that BUa € D(,p). 1# a¢ B and
|A| = |B|, thereexist € B, 5 ¢ A. By Lemma 3.2, V(z’,B\ﬁUaj -V(E,B)=
V&, A)-V (5, A\aUB) > p(a)—p(B) > p'(a)—p'(8) wherethelast tvﬂo inequalities
come from the facts that A is at least as desirable at pricesp than A\auﬂ, that
pla) =p/(a), and p’ (B) > p(B). Thus B\BU ae D(i,p') so that aLe D(G,p). |

The reverse proposition is not true: the GS property on demzlrnd holds for
reservation value functions which do not satisfy the Cardinality C%ndition. For
example it holds for the reservation value functions V' (i, A) = max{V(z’,a), ac
A), which correspond to the case where agants have use for only ohe object. In
this paper we are interested in the case where the agents are dw%ys willing to
purchase one more object if the priceis sufficiently low, i.e. to situations where
the marginal utility o every object is aways positive. We have not éucceeded in
characterizing dl reservation value functions which lead to the GroLs Substitute

interpretation, other than the ones satisfying the Cardinality dition. It is

property, so that we do not know if they involve functionswith a r:znral economic
clear on simple examples that the Gross Substitute property alow for more “free
parameters” in constructing the reservation value functions than th% Cardinality
Condition. If we come back to the example d Section 2 for whic*x there is no
equilibrium, and modify it to obtain existence o an equilibrium, then in order to
have the Cardinality Condition satisfied, w= can kegp the same resenvation values

for objects «, 3,7 and the reservation values for one of the subsets composed

o two objects (for example we keep the numbers in the column Bv). Then the
choice d numbers in this column determine al other reservation vd.+es for groups
of two objects (since the rharginal contribution o a and « to one#bject subsets
are determined). The values for the three-object subset aB+y ar# then "freg"

|
parameters (subject to the submodularity condition and monotonicity, that we
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have not used in the proofs, but isa natural assumption to require). For example,
if we keep the same values for V(i, 6 U ) as in the original example, then the

reservation values table must be

VAA a8y |of|ay|By|aBy
V(L,A) (1082 |17 {11 |9 |>17
5
1

V(2,4) | 8 1011 {16 [13 | >16
V(3,4) | 1 8 [2 |9 {9 |>9

If we only require that the demands satisfy the Gross Substitute property,
then the only restrictions on the agents' reservation values for subsets of two
objects are as follows: if V(i,a; Uaz) — V(i,a0) < V(3,01 Ug) — V(3,a3) then
it must be that V(i,a; Uas) — V(i,a1) = V(i,az Uasz) — V(i,az). For if, for
example, we had V(i,a1 U a3) — V(i,a1) > V(i,a3 U a3) — V(i,a9) then for
prices p such that V(i,a1 U ag) — V(i,x) < p(a1) < V(i,a1 U ag) — V(5,03),
V(i,a2Ua3) - V(i,a2) < p(az) < V(i,qqUasz) - V(i,a;) and V(4,as) ~ p(as) =
V(i,a1Uas) —p(a1) —p(a3), agent i s demand would consist of thesets {a;, a3}
and {az}. If the price p(ay) slightly increases! then the demand reduces to {a},
which violates the Gross Substitute property. A similar reasoning eliminates the
possibility that V(3,31 Uas) = V(¢,a1) < V(i,a2Uas) - V(i,a3). Thus, when the
column V(z, BU ) is chosen, there are til! some degrees of freedom for choosing
thevaluesdo V(i,au §) and V(i,aU~y) compatible with the GS property of the

demand. For example, we could keep the two columns a7 and g~ o the original

Yin such a way that the inequality p{c1) < V (i, U a3) — V (4, a3) which ensuresthat a3 is
not in the demand, still holds’
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table, and the table o numbers has just to be modified so as to satisfy

VWA |a |8y af ay | By | afy

V(1,A) | 10]8 |2 | 18<V(1,aUB) <17 |11 |9 | > max{11,V(1,aUB)}
V(2,4) |8 |5]10 11 14 (13 | >14

V3,4 |1 |18 [1<Vv(B,auB)<2 |9 [9 |>9

Thus there are more "freg' parameters with the GS assumption than with
the Cardinality Condition. It would be interesting to characterize all reservation
functions which lead to demands satisfying the GS property, in order to find
which interpretable restrictions on the preferences o the agents are compatible
with the GS property. Hopefully, future research will provide an answer to this

question.
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