
Working Paper Series
A Chronology of International Business Cycles Through Non-parametric Decoding
 
Hsieh Fushing 
U.C. Davis - Statistics
Shu-Chun Chen 
Academia Sinica, Taiwan
Travis J. Berge 
U.C. Davis
Oscar Jorda 
U.C. Davis
 
November 08, 2010
 
Paper # 10-20
 
This paper introduces a new empirical strategy for the characterization of business
cycles. It combines non-parametric decoding methods that classify a series into
expansions and recessions but does not require specification of the underlying
stochastic process generating the data. It then uses network analysis to combine the
signals obtained from different economic indicators to generate a unique chronology.
These methods generate a record of peak and trough dates comparable, and in one
sense superior, to the NBER’s own chronology. The methods are then applied to 22
OECD countries to obtain a global business cycle chronology.

 

Department of Economics
One Shields Avenue

Davis, CA 95616
(530)752-0741

 
http://www.econ.ucdavis.edu/working_search.cfm

http://admin.econ.ucdavis.edu/index.cfm


This version: October, 2010

A Chronology of International Business Cycles Through

Non-parametric Decoding∗

Abstract

This paper introduces a new empirical strategy for the characterization of business cycles. It

combines non-parametric decoding methods that classify a series into expansions and recessions

but does not require specification of the underlying stochastic process generating the data. It then

uses network analysis to combine the signals obtained from different economic indicators to generate

a unique chronology. These methods generate a record of peak and trough dates comparable, and

in one sense superior, to the NBER’s own chronology. The methods are then applied to 22 OECD

countries to obtain a global business cycle chronology.
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1 Introduction

Even before the onset of the recent financial crisis–the most severe global crisis since the

Great Depression–an extensive collection of papers investigated the evolution of global

economic fluctuations, contagion, convergence phenomena, and the synchronization of inter-

national economic activity (to cite a few Kose, Prasad and Terrones, 2003; Amber, Cardia

and Zimmermann, 2004; Stock and Watson, 2005; Kose, Otrok and Whiteman, 2008; and

Kose, Otrok and Prasad, 2008). This fascination with the manner in which economies are

interlinked emanates from the remarkable growth of trade and capital flows experienced

since the early 1980’s (e.g. Kose, Prasad and Terrones, 2003). However, in virtually every

paper the approach is the same: Are there common factors (in the statistical meaning of the

word) that explain fluctuations of economic activity across several countries?

In this paper we shift the focus from economic fluctuations to business cycles. It is

important to clarify the difference between the two:

Business Cycles are not merely fluctuations in aggregate economic activity.

The critical feature that distinguishes them from commercial convulsions of ear-

lier centuries or from seasonal or other short term variations of our own age is

that the fluctuations are widely diffused over the economy–its industry, its com-

mercial dealings, and its tangles of finance. The economy of the Western World

is a system of closely interrelated parts.

Arthur F. Burns in the Introduction to Wesley C. Mitchell (1951) What

Happens During Business Cycles: A Progress Report. National Bureau
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of Economic Research: New York.

Building on the work by Burns and Mitchell (1946) in the U.S., the National Bureau

of Economic Research (NBER) formally established a Business Cycle Dating Committee

(BCDC) in 1978 (although the NBER, founded in 1920, had published its first business

cycle dates in 1929 following the work of Mitchell, 1927). The BCDC produces a formal

chronology of expansions and recessions that now dates as far back as the trough of 1854.

In 2002 the Center for Economic Policy Research followed suit and founded the Euro Area

Business Cycle Committee. Similar official chronologies of business cycle turning points are

not easily found for many other countries.

It is instructive to quote here the definition of recession provided by the NBER:

A recession is a significant decline in economic activity spread across the

economy, lasting more than a few months, normally visible in production, em-

ployment, real income, and other indicators.

—Determination of the December 2007 Peak in Economic Activity, December

11, 2008. Business Cycle Dating Committee of the National Bureau of Economic

Research

This classification of economic activity into expansions and recessions recognizes that

these two states are fundamentally different from each other. Declines in economic activity

tend to be sudden but short-lived, whereas expansions tend to be more gradual and last for

a longer period. For example, in the U.S., the average duration of a recession is 11 months,

whereas expansions last on average four years (see Berge and Jordà, 2010).
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Our goal in this paper is to first provide intuitive and robust methods to construct

country-specific business cycle histories, and then to produce the foundation for regional

or global business cycle chronologies. We think such an exercise is of considerable interest

to policy-makers for several reasons. First, our focus is on the timing of turning points

across countries, and not on the correlation of an economic indicator across countries and

time. Focusing on the classification of economic activity itself is a fundamentally different

problem than looking for associations in economic fluctuations —one that we feel is central

to effective policy-making. Second, regional chronologies offer an alternative measure of

contagion that may be more conducive to analyzing how international shocks propagate

across economic regions. Third, and as the current crisis shows, international institutions

such as the International Monetary Fund (IMF) and the World Bank are naturally concerned

about the impact of simultaneous fiscal expansions in many countries to the extent that such

packages can have implicit protectionist effects. For these reasons, information about the

state of an economy is in many ways more constructive than examining the fluctuations of

an economy per se.

Classification of economic activity is difficult since the underlying state of the economy

is intrinsically unobservable. Moreover, the definitions used by dating committees are often

not operational. It is not clear what is meant by “economic activity,” or how one should

construct such a variable. Moreover, even if such a variable could be constructed, dating

committees do not sufficiently clarify how one then decides on what is an expansion and

what is a recession, and very often simple ‘rules-of-thumb,’ such as defining a recession as
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two consecutive quarters of negative GDP growth, classify economic activity quite poorly

(see, e.g. Berge and Jordà, 2010).

An important contribution of our paper is to introduce a novel statistical approach to

the problem of classifying economic activity. The question of whether or not the economy is

experiencing a recession is viewed as a computational learning or pattern recognition prob-

lem, more specifically, a decoding problem. Decoding is most often referred to in information

theory as an algorithm for recovering a sequence of code words or messages from a given

sequence of noisy output signals (Geman and Kochanek, 2001). Since our approach differs

from traditional practices in economics, it is useful to provide some context here before we

introduce the methods formally in the next section.

Perhaps the best-known statistical approach to uncovering the latent state of the econ-

omy is based on specifying the state-space with a hidden-Markov mixture model, of which

Hamilton’s (1989) well-known regime-switching model is an example. These models specify

regime-specific stochastic processes for a given variable (usually, but not exclusively, GDP),

where the transition between regimes is regulated by a latent Markov process. Regime-

switching models have the disadvantage of being parametrically intensive, and require that

one impose assumptions regarding the evolution of economic activity that may or may not

be sensible. Instead, the procedures that we propose are non-parametric, parsimonious and

computationally simple. We want to avoid having to make structural assumptions about

state-space dynamics. To do so, we utilize techniques that are generally referred to as “non-

parametric decoding;” in particular, we use the Hierarchical Factor Segmentation (HFS)
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algorithm introduced in Fushing, Hwang, Lee, Lang and Horng (2006).

HFS applies maximum entropy methods to derive the recurrence time distribution of

certain pre-specified events observed in the data. That is, HFS algorithmically partitions

the data into segments where the intensity of the recurrence distribution in adjacent segments

differ significantly. Then, using model selection criteria, one can select the best partition

of the data and use the likelihood ratio principle to compare this partition to the null that

the recurrence distribution has a constant intensity. The idea of looking at recurrence times

dates back at least to Poincaré (1890). In this way, the decoding problem is transformed

into an event intensity change-point problem where there is no prior knowledge about the

number of change-points.

Applying HFS to economic indicators produces patterns of event intensity (expansions

and recessions). As an example, consider the pre-specified event of negative GDP growth.

Observed U.S. GDP growth was negative in about 17 percent of the quarters between 1947:I

and 2009:IV. Under the null that the recurrence distribution has a constant intensity, one

would expect to observe a negative quarter of GDP growth every 6 or 7 quarters. In the

data, however, we instead observe that negative GDP growth comes in clusters, each of which

we usually identify as a recession. It is in this sense that the HFS algorithm searches for

patterns–the algorithm is able to partition a sequence of data by exploring the recurrence

time of a particular event.

Our search for recessions and expansions internationally is guided by the definition of

recession given by the NBER’s dating committee. Since ‘economic activity’ cannot be de-
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scribed by simply one observable (GDP), we consider several indicators for many different

countries. The HFS algorithm is applied to each indicator separately. In order to combine

information obtained in this manner from different indices, we then apply network analy-

sis (e.g. Watts and Strogatz, 1998) to determine with more precision the onset of cyclical

phases. Network analysis has the flavor of a majority voting rule, a commonly used tool in

pattern recognition problems (see, e.g. Hastie, Tibshirani and Friedman, 2009).

We next describe in detail the techniques used to classify economic activity. In the

interest of checking the robustness of our findings, we then compare the chronology that

results from our procedure to the chronologies available for the U.S. by the NBER. This

serves as a benchmark for readers to assess how our methods work in practice. We then

apply HFS to a collection of 22 OECD countries. We aim to generate a chronology of

business cycles for each individual country that can serve as a benchmark for those countries

that do not have business cycle dating committees, as well as a single global business cycle

chronology since these countries represented over 60% of world output in 2009.

2 Statistical Design

Dating business cycle turning points is a classic pattern-recognition problem, as the definition

of what a recession is quoted in the previous section shows. However, as Berge and Jordà

(2010) discuss, there is considerable tension within the NBER’s BCDC when grappling with

the concept of economic activity, in particular, how to combine signals from output and

employment indicators. Evidence of this tension was apparent in a brief statement issued by
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the seven member BCDC on April 12, 2010, in which the committee states that “it would be

premature to set a date marking the end of the last economic contraction and the beginning

of an expansion” (see, e.g., the related story in the Los Angeles Times, April 13, 2010)1 .

The statement was followed by a dissenting (and surprisingly candid) press release by one

of its members, Robert J. Gordon.

The committee decided not to declare that the recession was over and thus

did not devote serious attention to determining the trough month. However, the

data are clear, once we focus on measures of production rather than measures of

employment, which historically have lagged the recovery of production.

—Robert J. Gordon, quoted in the article “Dissent on Recession’s End” by

Catherine Rampell in the New York Times, April 12, 2010.2

Since then, the end of the recession was announced to have been June 2009, but that

pronouncement was made a few months after this quote, on September 20, 2010.

Even if there were to be agreement on what economic activity is, the underlying state

of the economy (expansion/recession) is not directly observable and has to be inferred. In

fact, Hamilton (2005) suggests that the inability to define a business cycle as a fundamental

attribute of the data-generating process is inherent in any time series model. One reason

is that the recurrence of cyclical phenomena is itself stochastic. Burns and Mitchell (1946)

used graphs to summarize the heterogeneity of business cycle patterns. Subsequently, Stock

1 http://www.latimes.com/business/la-fi-recession13-2010apr13,0,3381428.story

2 http://economix.blogs.nytimes.com/2010/04/12/dissent-on-recessions-end/

7



(1987, 1988) argued that this way of thinking about the data necessarily implies a nonlinear

data generating process. In order to reclaim some regularity to the recurrence of business

cycles, he proposed the idea of time-deformation.

In this paper, we abandon the idea of fitting an economic indicator via statistical modeling

in either the original or a re-scaled temporal axis. Instead we use a computational approach:

a diagnostic testing mechanism combined with a network. This approach takes advantage

of the synchronicity of patterns across economic indicators as suggested by the NBER’s

definition of recession, and then summarizes them via a network’s connectivity properties.

Because we will be looking at several indicators and several countries simultaneously, the

high-dimensionality of the data makes it impractical to use structural hidden-Markov models

such as Hamilton’s (1989) regime-switching model.

2.1 The Null Distribution When the State-Space Trajectory is

Constant

Let Xn = {Xt}nt=1 denote the observed time series for an economic indicator (it will help

the reader to think of Xt as the annual growth rate in the industrial production index,

for example). Under the null hypothesis the trajectory of Xn is determined by a unique

state. Under the alternative hypothesis, two state-space trajectories for Xn are determined

depending on the state variable Sn = {St}nt=1 , St ∈ {0, 1} where, say, St = 0 for expansion;

1 for recession. The task of recovering Sn from Xn is called decoding. When no assumptions

are imposed on state-space dynamics, this task is called non-parametric decoding.

Under the view that the evolution of Xn is driven by two state-space trajectories, consider
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a separating event A that is more likely to be associated with one state than the other. For

example, when Hsieh, Chen and Pollard (2009) decode DNA sequences, an event corresponds

to the observation of a CG di-nucleotide, which marks genes often associated with certain

diseases. In Hsieh (2010) the event is based on the volatility of the returns of a financial

asset. Here we choose observations of Xn such that Xt < h where h is pre-specified in a

manner that we discuss momentarily.

The choice of h is best understood with an example. Figure 1 shows kernel density

estimates for the empirical distribution of the annual growth in the industrial production

index (IP) for the U.S. (i.e. the log difference of a given quarter from that quarter in the

previous year), using the NBER’s chronology of recessions. The idea is that an observation

of IP growth at the bottom of the 30th percentile (a precise cut-off is not necessary as we

shall see) of the overall empirical distribution of IP is more likely to be associated with a

recession than an expansion. Smaller values of h generate a lower rate of false positives (or

(1 - sensitivity), i.e. Pr[Xt < h|St = 0]), but also result in a lower true positive rate (or

sensitivity, i.e. Pr[Xt < h|St = 1]). Using the NBER recession dates, IP turns out to have

an area under the ROC curve (AUC) of 0.88 (the ROC curve is a tool used in classification

evaluation where a value of AUC = 1 implies perfect classification and a value of AUC = 0.5

no better than coin-toss classification ability, see Berge and Jordà, 2010). The AUC is a

Mann-Whitney statistic that measures the distance between the recession and expansion

distributions. For h = 30th percentile, the true positive rate is TP (h) = 0.78; and the false

positive rate is FP (h) = 0.20, which strikes a nice balance between successfully detecting
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recessions often, with a relatively low rate of false positives.

Although a precise choice of h may appear critical to obtain a proper partition of the

sample into expansions and recessions, in practice this is not the case for reasons that

will become clear momentarily. We have experimented with Monte Carlo simulations not

reported here and found that values of h representative of the 30-40th percentile distribution

of Xn strike a good balance between specificity and sensitivity (or true positives and false

positives). We use the 30th percentile in our applications.

The number of periods between consecutive separating events is called the recurrence

time. That is, let Cn =
n
C
(0)
t

on
t=1

such that C
(0)
t = 1 if Xt < h, 0 otherwise with

Pn
t=1C

(0)
t = n(1), which counts the number of events for which Xt < h, and hence de-

fine τ
(1)
k = inf{t|τ (1)k−1 < t < n such that C

(0)
t = 1} where k denotes the kth event. The

use of the superscript (j) for j = 0, 1 will become clear momentarily but it essentially de-

notes the segmentation level. Then the recurrence times are R
(1)
k = τ

(1)
k − τ

(1)
k−1 so that

Rn(1) =
n
R
(1)
k

on(1)
k=1

.When Xn is generated by a unique state-space trajectory, the recurrence

time distribution for Rn(1) can be shown to be geometric G(Rk;λ) with intensity parameter

λ. This result is based on the maximum entropy principle of Jaynes (1957a, b), where one

can also show that the intensity parameter is a function of the average recurrence time.

Specifically, let the probability distribution of Rn(1) be denoted by pi = Pr[R
(1)
k = i],

i = 0, 1, ... with entropy H(Rn(1)) = −Pn(1)
i=0 pi log pi such that E

h
R
(1)
k

i
≡ r = P∞

i=0 ipi and

with the obvious constraint that
P∞
i=0 pi = 1. Then, Fushing, Chen and Hwang (2010a, b)
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solve for the maximum of

Q(p,λ) =
∞X
i=0

pi log pi + η1

Ã ∞X
i=1

ipi − c
!
+ η2

Ã ∞X
i=1

pi − 1
!

where η1 and η2 are Lagrange multipliers associated with the constraints, and show that

p1 = 1/r;

which is easily estimated from

br = Pn(1)
k=1 R

(1)
k

n(1)
.

In addition,

pi = 1/re
λ(i−1)

with intensity

λ = log
½

r

1− r
¾
,

Fushing, Chen and Hwang (2010a, b) denote this geometric distribution as G(Rk;λ), where

λ denotes its intensity.

In the next section we present the HFS algorithm, which partitions the data into segments

with recurrence times generated by the optimal mixture of geometric distributions and which

can be compared to the recurrence time distribution from a conventional mixture model using

the likelihood ratio principle, as we will show.

2.2 The Hierarchical Factor Segmentation (HFS) Algorithm

We introduce some additional notation to provide intuition for the method we present in

this section. Let P0 denote the distribution of Xt when St = 0 and P1 when St = 1 under
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the view that Xn is generated by a mixture process. A key feature of the HFS algorithm is

that it does not construct likelihood functions for P0 and P1 or the transition probabilities,

as a typical hidden-Markov model would do.

The HFS algorithm partitions the data Xn according to h using two sequential segmen-

tations of the resulting empirical recurrence times meant to non-parametrically seek the

optimal mixture. The basic idea is to generate alternating sequences of high/low recurrence

intensity and then choose that partition that minimizes a noise-to-signal criterion to be

explained below.

The HFS algorithm can therefore be summarized as the following collection of steps,

some of which have been discussed already:

HFS-1 Transform Xn into a 0-1 digital string Cn =
n
C
(0)
t

on
t=1

such that C
(0)
t = 1 if Xt < h, 0

otherwise; with
Pn
t=1C

(0)
t = n(1), the number of identified events in which Xt < h.

HFS-2 Let

τ
(1)
k = inf{t|τ (1)k−1 < t < n s.t. C

(0)
t = 1}

where τ
(1)
k is event-time for the kth occurrence and hence define the recurrence times

R
(1)
k = τ

(1)
k − τ

(1)
k−1 so that Rn(1) =

n
R
(1)
k

on(1)
k=1

.

HFS-3 Let ρ1 denote the upper ρth1 − percentile of the empirical distribution of Rn(1) and

hence let the 0-1 digital string Cn(1) =
n
C
(1)
k

on(1)
k=1

be defined such that C
(1)
k = 1 if

R
(1)
k > ρ1 and note that

Pn(1)
k=1 C

(1)
k = n(2), the number of events in which R

(1)
k > ρ1.

12



HFS-4 Let

τ
(2)
k = inf{τ (1)k |τ (2)k−1 < τ

(1)
k < n(1) s.t. C

(1)
k = 1}

and hence define the recurrence times R
(2)
k = τ

(2)
k − τ

(2)
k−1 so that Rn(2) =

n
R
(2)
k

on(2)
k=1

.

HFS-5 Let ρ2 denote the upper ρ
th
2 −percentile of the empirical distribution ofRn(2) and hence

let the 0-1 digital string Cn(2) =
n
C
(2)
k

on(2)
k=1

be defined such that C
(2)
k = 1 if R

(2)
k > ρ2.

HFS-6 Cn(2) can then be mapped into Cn (since τ (2)k maps into τ
(1)
k and τ

(1)
k into t) or Xn as a

partition of
Pn(2)
k=1 C

(2)
k = m segments on the time span [1, n] . Denote this partition as

N (X n) = {[Pi, Ti); [Ti, Pi)}mi=1 where Pi denotes “peak” and Ti denotes “trough” to use

the same nomenclature as the NBER’s dating so that the first set of segments refers

to recessions (peak to trough) and the second set of segments to expansions (trough

to peak).

Thus, the partition N (X n) separates high event-intensity from low-intensity segments.

Segments [Pi, Ti) corresponding to recessions will have a high proportion of ones in the code-

sequence Cn whereas segments [Ti, Pi) corresponding to expansions will have a low proportion

of ones. The partition therefore gives rise to the recession indicator Sn(1) =
n
S
(1)
k

on(1)
k=1

with

S
(1)
k ∈ {0, 1} to indicate whether R(1)k is a recurrence time belonging to an expansion segment

(S
(1)
k = 0) or a recession segment (S

(1)
k = 1).

Computationally speaking, the number of partitions N (X n) associated to all thresholds

(ρ1, ρ2) is much less than 2
n so that the set of candidate partitions is relatively small. This

feature of the HFS algorithm facilitates computation of all the relevant change-points.
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2.3 Determining the Optimal Thresholds (ρ1, ρ2)

In Section 2.1 we showed that for a given event, the code-sequence C(0)n generates event

recurrence times Rn(1) characterized by a geometric distribution G(Rk;λ) under the null

that the state-space trajectory is unique. The code sequences Cn(j) for j = 1, 2 are generated

with the thresholds (ρ1, ρ2) and result in the partition N (X n) where the event recurrence

time in the segments [Pi, Ti) is possibly different than for the segments [Ti, Pi) for i = 1, ...,m

and we use S
(1)
k ∈ {0, 1} to denote whether R(1)k is a recurrence time observed in an expansion

segment or a recession segment.

It is worth summarizing some of the features implied by our set-up:

A.1 [No cross-over]: Each R
(1)
k comes from a single segment.

A.2 [Independence]: The recurrence time R
(1)
k is stochastically independent of R

(1)
h for any

k 6= h in which k and h belong to different segments.

A.3 [Geometric Distribution]: Pr[R
(1)
k |S(1)k = s] = G(Rk;λs); s = 0, 1 where the intensity

parameters λs, s = 0, 1 are unknown.

Features A.1 and A.2 are quite mild. Feature A.3 requires that each regime segment be

stationary but with limited serial correlation. Specifically, if Xn is an exchangeable process

in the sense of Chang et al. (2010) then one can use the maximum entropy principle under

the i.i.d. of R
(1)
k .

Under features A.1-A.3 and the maximum entropy principle, then the large-sample dis-

tribution of Rn(1) is characterized by a geometric mixture with intensity parameters given
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by

λMs = log
½

rs

rs − 1
¾
; s = 0, 1

where

brs = Pn(1)
k=1(1− s)R(1)k (1− S(1)k ) + sR(1)k S(1)k

s
Pn(1)
k=1 S

(1)
k + (1− s)

³
n(1)−Pn(1)

k=1 S
(1)
k

´ ; s = 0, 1.
Thus the likelihood for the mixture is calculated, delivering intensity parameter estimates

bλM0 and bλM1 . Then, using a grid-search over different values for θ = (ρ1, ρ2), we minimize the
noise-to-signal ratio given by

bθ = argmin
θ

⎡⎢⎢⎣
¯̄̄̄bλM0 − bλθ0 ¯̄̄̄bλM0 +

¯̄̄̄bλM1 − bλθ1 ¯̄̄̄bλM1
⎤⎥⎥⎦

which implicitly generates intensity estimates bλθ

0,
bλθ

1. We have found that this procedure

works very well in practice, and is superior to the use of information criteria, such as AIC

or SIC (see Hsieh, 2010).

3 Evaluating the HFS Chronology against the NBER

The NBER compiles a chronology of business cycle turning points for the U.S. —a natural

benchmark with which to evaluate the HFS algorithm. Several features complicate a direct

comparison between methods, however. First, the NBER uses several economic indicators to

generate a single series of recession dates. For this reason, we begin by discussing methods

to properly combine information from several indicators to produce a single chronology

based on the HFS algorithm. These methods are based on network analysis (see e.g. Watts

and Strogatz, 1998). Second, the true state of the economy is unobservable and therefore
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conventional methods cannot be used to evaluate the accuracy of classification from each

approach. We discuss each of these issues in turn.

3.1 Statistical Learning from Multivariate Data Through Net-

works

The NBER’s definition of recession (see the quote in the introduction) focuses on fluctua-

tions in “economic activity,” a loose term that captures some combination of output and

employment variables that is not made specific. However, the NBER does provide the list

and the transformations of the indicators used in the deliberations.3 The appendix contains

the complete list along with the sources. They are: the industrial production index (IP); real

personal income less transfers (PI); payroll employment (PE); household employment (HE);

real manufacturing and trade sales (MTS); real gross domestic product (GDP); and real gross

domestic income (GDI). All the indicators are available at a monthly frequency although

the latter two are interpolated from quarterly data following the procedures described by

the NBER (and described in the appendix in more detail).

For all of these series, we apply the HFS algorithm to 100 times the year-on-year log dif-

ference, which is approximately the annual growth rate in percentage terms. For a discussion

of the effects of transformations other than the year-on-year transformation used here, see

Berge and Jordà (2010). In experiments not reported here, we found that the year-on-year

transformation provided the best balance between smoothing noise while highlighting the

signal.

3 These are available at: http://www.nber.org/cycles/dec2008.html
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Next, we apply the HFS algorithm to each individual series and therefore generate seven

segmentations for the U.S. Figure 2 presents the recession dates for each series against the

NBER recession dates in the U.S. Several results deserve comment. Most recessions are

bracketed by the segmentation found for the collection of series although individually, it

is easy to see that there may be slight differences in the peaks and troughs implied by

the segmentation and those from the NBER. This is not surprising: it is well known that

employment tends to lag output when coming out of recessions, for example. There appear

to be some false positives —for some series HFS identifies some phantom recessions— as

well as some false negatives —some recessions that are not detected in some of the series.

However, recall that a recession is an event that spreads throughout the economy and is felt

in production, employment and income, simultaneously — it is not surprising to find these

discrepancies. For this reason, the natural next step is to describe how this information can

be combined to come up with the dating of expansions and recessions. This we do with

network analysis.

We construct a network for each period in the sample using seven nodes for the U.S.,

one for each economic indicator. Next, for each country we connect any two nodes whenever

the HFS segmentation of each of the two candidate indices selects a particular period t as

being a recession. Given this network, one can calculate the “wiring ratio,” which is the

proportion of wired pairs among all possible pairs. That is, let qt denote the number of

series considered (the seven indicators in this application) and pt the number of series out

of the qt that at time t are classified as being in the recession regime. Then the wiring ratio
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is wt = pt(pt − 1)/(qt(qt − 1)).The time profile of the wiring ratio is shown at the bottom

of Figure 2. It is easy to see that high values of the wiring ratio match the NBER dates

rather well. Notice that for the first couple of decades (in a sample that begins in 1920), only

industrial production data are available and hence the wiring ratio is zero by construction.

The wiring ratio combines the information from the seven indicators, but in the end we

would like to obtain a binary indicator of recession dates. In order to obtain an optimal

threshold for the wiring ratio (that would best sort the data into expansions and recession) we

choose the threshold that would maximize the net correct classification skill (see Baker and

Kramer, 2007 and Berge and Jordà, 2010), that is, choose the threshold c that maximizes:

U(c) = 2π
µ
TP (c)− 1

2

¶
− 2(1− π)

µ
FP (c)− 1

2

¶

where π = P (S = 1) , TP (c) = P (w > c|S = 1) and FP (w > c|S = 0) where recall that

S denotes the binary indicator of the true underlying state with S ∈ {0, 1} and 1 denotes

recession, and w denotes the wiring ratio. Figure 3 displays the optimal threshold calculated

using a combination of the incidence rate —the ratio of series indicating recession relative

to total— when the number of indicators available is less than three, and the wiring ratio

thereafter. The optimal threshold turns out to be 0.0741 suggesting that when 3 or more

indicators signal recession, it should be concluded that the economy is in recession.

As a way to compare the chronology of recessions generated by the NBER and the HFS

algorithm, we construct an aggregate activity index using the first principal component of the

seven economic indicators described by the NBER and listed in the appendix. Therefore, the

left panel of Figure 4 displays this index against the HFS recession dates, whereas the right
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panel does the same but for the NBER dates. Further, the dates of peaks and troughs are

listed at the end of Table 1. Notice that there is a strong agreement (the same recessions are

detected after 1968, which is when data for all indicators is available to build a comprehensive

aggregate activity index), although HFS tends to generate slightly longer lasting recessions.

As a final check, we examined the classification ability of HFS against the NBER using the

receiver operating characteristic (ROC) curve, specifically, the area under this curve (AUC),

which we described above. The area under the ROC curve (AUC) can be interpreted here

as the probability that an observation from the aggregate activity index drawn from the

recession distribution has a smaller value than an observation drawn from the expansion

distribution — call this probability δ (see Green and Swets, 1966). Intuitively, we expect

recessions to be associated with periods in which economic activity is dim and expansions

with periods where it is bright. The AUC is a statistic that takes on the value of 0.5 when

a given classification produces no better than a random chance δ, and takes the value of 1

when separation between the two distributions is perfect. This statistic has a Gaussian large

sample distribution (see Hsieh and Turnbull, 1996). We calculated the AUC statistic for HFS

and for the NBER using the aggregate activity index. The AUC for HFS is AUC = 0.86

whereas for the NBER it is AUC = 0.91. Both are statistically different from the null of

random chance at better than 99% confidence level but one cannot reject the null that they

are equivalent in the statistical sense at a 95% confidence level. Of course, this is not meant

to suggest that therefore one should replace the BCDC with a computer, but it is meant to

give assurance that the HFS algorithm has good statistical properties and that it produces
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a classification of recessions that is sensible when compared with the NBER’s benchmark.

4 International Business Cycles

Results from the previous section suggest that HFS is a reasonable approach to constructing

a chronology of business cycle turning points —the metric that we introduce here performs

similarly for both procedures. Moreover, the application of network analysis to refine the

construction of this chronology by combining the signals from different indicators meshes

well with the philosophy spelled out by the NBER that recessions ought to be visible in

several sectors of the economy simultaneously. In this section we present several results of

interest. First, we construct a chronology of peaks and troughs for 22 OECD countries: Aus-

tralia, Austria, Belgium, Canada, Switzerland, Chile, Denmark, Germany, Spain, Finland,

France, Greece, Ireland, Italy, Japan, South Korea, Netherlands, Norway, New Zealand,

Portugal, Sweden, and the U.K. We do this by generating HFS chronologies for three indica-

tors: monthly industrial production (IP) indices and employment and, linearly interpolated

quarterly real gross domestic product (GDP). The source for our data set is the IMF and

the OECD, with transformations and samples available discussed in the appendix. Although

each series is often available for samples of differing lengths, we use the following approach.

For periods when only one series is available, we use the HFS chronology directly. For pe-

riods when two series are available, we use the rule that when one or two indicators signal

recession, we call that period a recession. For periods when all three indicators are available,

we use the rule that when two or more indicators signal recession, that period is classified as
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a recession. The results of this exercise are reported in Table 1. For completeness, we have

added the HFS-based chronology for the U.S., calculated in the previous section along with

the NBER’s official chronology.

The dates reported in Table 1 should, in and of themselves, prove of value to researchers

as they provide a benchmark chronology for many countries for which there is no official

dating of business cycle turning points. For this reason, we have chosen to report the dates

obtained by our procedures without any further adjustment. We mention this because we

have encountered a few instances in which two contiguous recessions are separated by only

a few months and could therefore be conceivably considered as a single, longer running

recession. For example, in the U.K. we date a recession that starts May 1973 and ends

January 1974, with the next recession starting August 1974 and ending July 1975. Therefore,

one could have merged these two recessions into one that started May 1973 and ended July

1975. To provide more clarity on this issue, we provide a plot of the yearly growth rate of

GDP against the HFS chronologies in Figure 5 for the UK and in Figure 6 for the remaining

OECD countries analyzed. Thus, Figure 5 shows the temporary jump in GDP between

recessions. Another good example is the recession that began in February 1988 and ended in

October 1989, which was then followed by the recession that began in May 1990 and ended

April 1991. It is clear from the graph that the period between recessions represents a brief

respite in the steep decline of GDP that began May 1990 and ended with the trough of 1991.

Figures 7, 8 and 9 display the HFS dates selected for each country per indicator: industrial

production (IP); real gross domestic product (GDP); and employment. They are provided
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for completeness and to show that for some indicators, the available sample is rather short.

However, for many countries there exist relatively long samples for all three indicators. Thus,

Figures 7-9 document the length of the samples available for each indicator and country HFS

chronologies.

The last exercise in this section takes us to our goal of constructing a global business

cycle indicator since our sample of countries accounts for about 60% of world output in

2009. We use the following approach to identify events that had international resonance,

for which the IMF might have been particularly interested. We constructed the wiring ratio

(defined above as consisting of counting the pairs of countries simultaneously experiencing

a recession in a given period normalized by the total number of possible pairs) using the

HFS dates of peaks and troughs presented in Table 1. We identify global recessions with the

rule-of-thumb requiring nine or more countries to be involved. Nine countries corresponds to

a wiring ratio of about 0.14, which is sufficient to focus on a few choice events. The value is

a slightly higher value than we used for the U.S. (0.0741), but not by a large amount. This

is, of course, arbitrary but it is meant to serve as an illustration. Also, we note that the

wiring ratio is not weighted by the size of the economy, which is another modification that

could be considered. The graph of the wiring ratio and the threshold 0.14 are presented in

Figure 10 and result in 7 cyclical events tabulated in Table 2.

We comment on some of these global recession dates starting from the most recent. It

is clear that the recent financial crisis had a widespread effect, engulfing the majority of

countries in our sample. In the U.S. the beginning of the recession was dated December
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2007 and the end June 2009. Our global recession indicator suggests that by February 2008,

the recession that had started in the U.S. swept a large majority of developed economies in

its wake. Some countries whose financial system withstood the near collapse of the American

financial system after the fall of Lehmann Brothers began to recover so that by April 2009,

only a few countries remained in recession (such as the U.S.). The next interesting event has

to do with the recession that we date as starting in August 2000. This is interesting because

it predates the onset of the recession in the U.S. (dated March 2001) by half a year, and ends

in May of 2001 — half a year earlier than it did in the U.S. although one has to factor in the

attacks of September 11 of that year in New York. The next event is short-lived —one month—

and it is probably best classified as a non-recession but it is kept as an “honesty” check of the

mechanical rule that we have self-imposed. It is clear that a slightly lower threshold would

have produced a more regular looking event. After that we have another global event dated

to have started November 1973 and ending in January 1975, which is easily identifiable with

the first oil crisis that began in October 1973 with OPEC’s oil embargo in response to the

U.S.’ decision to supply the Israeli military during the Yom Kippur (or Arab-Israeli) War.

The May-August 1964 event pre-dates the American escalation in the Vietnam war after the

August 2, 1964 events in the gulf of Tonkin, but involves a smaller number of countries. The

May 1960 to July 1961 again seems to have been led by the U.S. where the recession started

in April 1960 but ended in February 1961. We remark that the last global event detected to

take place January to December 1957 is based on a smaller number of countries for which

data was available and hence may not be as “global” an event as the preceding ones.
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Of course, there are many interesting extensions that are possible using the tools that

we have introduced in the paper. For example, one may be interested in regional recessions

(say for countries in the European monetary union), or by grouping the U.S. and its major

trading partners, just to name two that would be interesting. And of course, one may want

to weigh the wiring ratio by the size of the economy (for the first example) or by the size

of its exports to the U.S. (in the second example). There are extensions that are left for a

different paper.

5 Conclusions

The traditional approach in modeling time series with switches in regimes consists in spec-

ifying the likelihood function of a model that allows for such dynamic transitions and that

characterizes the dynamic behavior of the data within each regime. In other words, one is

required to characterize all aspects of the dynamic evolution of the stochastic process under

consideration. This paper uses an alternative philosophy to this problem: it takes a de-

cidedly non-parametric approach so as to avoid the constraints that a fully specified model

imposes on the researcher’s ability to properly classify the data. Specifically, our approach

simply looks at the relative incidence of tail events and then characterizes the duration dis-

tribution between such events. Under the null that observations are drawn from a unique

data generating density, the entropy principle (Jaynes, 1957a, b) allows us to characterize

the null duration distribution. But under the alternative, the duration between tail events

under one regime will be considerably different than under the other, and such differences
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can be formally tested. This principle uses basic ideas that have been around at least since

Poincaré (1890) and is translated into practice with a simple algorithmic procedure: the

hierarchical factor segmentation method of Fushing, Hwang, Lee, Lang and Horng (2006).

The HFS algorithm can be thought of as straddling the statistics and the computer science

literatures in that it can also be interpreted as a decoding algorithm. In fact, HFS was

originally developed in biology but has since been applied to other disciplines.

HFS is one element of a broader strategy for finding and properly classifying cyclical

phenomena in economic time series. Recessions are characterized by a slowdown in eco-

nomic activity felt across different sectors that exhibit varying resilience to the economic

downturn, and therefore a different chronology of peaks and troughs. Therefore, another

important element of the strategy presented here consists in operationalizing the NBER’s

stated principle of combining information garnered from a variety of economic indicators.

In following a more comprehensive approach to this problem than is conventional (say, with

common dimension reduction techniques based on principal component analysis or with fac-

tor models), we consider methods borrowed from computer science and network analysis in

particular. Such methods are particularly well suited for this problem as they focus on the

temporal concurrence of recession signals rather than on their relative correlation patterns.

Our methods produce a business cycle chronology for the U.S. that rivals that produced

by the NBER. Armed with this result, we embark in an analysis of a long list of OECD

countries (22 plus the U.S.), something that would be far more arduous to do with existing

methods. We hope that these 22 chronologies will at least serve as the basis for a bench-
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mark registry of international business cycles. Undoubtedly, individual chronologies can be

improved upon on a case-by-case basis by extending the menu of economic indicators consid-

ered for each country, and we hope that others will follow such an approach. In continuing

work by us (Fushing, Chen, Berge and Jordà, 2010), we do precisely this for Taiwan where

an official business cycle chronology is published by the Council of Economic Planning and

Development (CEPD) and can be used as a basis for comparison.

A natural extension of our methods (based on the ability to generate business cycle

chronologies for a long list of countries that represent about 60% of world output in 2009) is to

document episodes of global downturns, where a considerable portion of countries experience

a slowdown simultaneously. Such an analysis uses the same network techniques that we

used for the U.S., but across countries rather than across indicators. Several extensions are

natural to the analysis that we present here, such as weighing by the size of the economy,

focusing on trading blocks, regional economic unions, and so on. This type of analysis has the

advantage of extracting synchronicity in cyclical activity rather than looking at correlations

across economic indicators that may not be of the same scale and hence difficult to associate

(such as the growth rates of a developed and an emerging country). We recognize that

several improvements to our analysis can be done and many of these improvements will be

driven by the specific nature of the application considered, but we hope to have provided

the fundamental tools for such an exploration.

26



6 Appendix: Data Sources

6.1 US Data

This is a summary of the economic indicators, transformations and data sources provided

in the appendix of the December 11, 2008 press release of the Business Cycle Dating

Committee of the National Bureau of Economic Analysis and available from their website

(www.nber.org).

Indicator Sample Available Source and Method

Industrial Production 1919:1 - 2009:12 FRB index B50001

Real Personal Income less

transfers

1959:1 - 2009:12 BEA Table 2.6, line 1 less line 14,

both deflated by a monthly inter-

polation (see below) of BEA Table

1.1.9 line 1

Payroll Employment 1939:1 - 2009:12 BLS Series CES0000000001

Household Employment 1948:1 - 2009:12 BLS Series LNS12000000

Real Manufacturing and

Trade Sales

1967:1 - 2009:12 BEA Table 2BU, line 1

Real Gross Domestic

Product

1947:I - 2010:I BEA Table 1.1.6, line 1

Real Gross Domestic In-

come

1947:I - 2010:I BEA Table 1.10, line 1, divided by

BEA Table 1.1.9, line 1
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Websites:

• Federal Reserve Board industrial production index:

www.federalreserve.gov/releases/g17/iphist/iphist_sa.txt

• Bureau of Economic Analysis, U.S. Department of Commerce, all but sales:

www.bea.gov/national/nipaweb/SelectTable.asp?Selected=N

Sales: www.bea.gov/national/nipaweb/nipa_underlying/SelectTable.asp

• BLS payroll survey: http://data.bls.gov/cgi-bin/surveymost?ce

• BLS household survey: http://data.bls.gov/cgi-bin/surveym

6.2 International Data

Three economic indicators are used for each country: Real Gross Domestic Product, Indus-

trial Production and Employment. The primary data source for all three series was the IMF’s

International Financial Statistics database. Employment data were supplemented with data

from the OECD OECD.Stat database when data are missing or to provide a longer series.

We use monthly indicators when available, then transform this indicator into a year-on-year

growth rate, so that the indicator becomes xt = 1200 ∗∆12logXt. We interpolate quarterly

observations into monthly observations using the same methodology that the Business Cy-

cle Dating Committee of the NBER uses to interpolate Gross Domestic Product and Gross

Domestic Income. In particular, the value of the index in the first month of the quarter is

one third of the past quarter’s value plus two-thirds of the current quarter’s value. In the

second month, it is the quarter’s value. In the third month, it is two-thirds of the quarter’s
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value plus one third of the next quarter’s value. The interpolated monthly observations are

again transformed into growth rates.

Country Isocode GDP Industrial Production Employment

AUS 1959:III - 2010:I 1957:III - 2010:I 1964:2 - 2009:12∗

AUT 1964:I - 2010:I 1988:1 - 2009:12 1957:1 - 2009:12

BEL 1981:I - 2010:I 1957:1 - 2009:12 1999:I - 2009:IV

CAN 1957:I - 2010:I 1995:1 - 2009:12 1956:1 - 2009:12∗

CHE 1966:I - 2009:IV 1960:I - 2009:IV 1976:I - 2010:I

CHL 1980:I - 2009:IV 1958:1 - 2009:12 1986:1 - 2009:12

DEN 1977:I - 2009:IV 1957:1 - 2009:12 1995:I - 2010:I

DEU 1960:I - 2009:IV 1958:1 - 2009:12 1962:I - 1991:I∗;

1991:1 - 2009:12

ESP 1970:I - 2009:IV 1961:1 - 2009:12 1964:II - 2010:I

FIN 1970:I - 2009:IV 1957:1 - 2009:12 1964:1 - 2009:12∗

FRA 1970:I - 2010:I 1957:1 - 2009:12 2003:I - 2008:IV

∗ Indicates data from the OECD database
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Country Isocode GDP Industrial Production Employment

GRC 1975:I - 1991:I; 2001:I

- 2010:I

1995:1 - 2009:12 1998:I - 2009:IV

IRE 1997:I - 2009:IV 1975:7 - 2009:12 1998:I - 2010:I

ITA 1980:I - 2009:I 1957:1 - 2009:12 1959:I - 2009:IV

JPN 1957:I - 2010:I 1957:1 - 2009:12 1955:1 - 2009:12∗

KOR 1960:I - 2010:I 1980:1 - 2009:12 1982:7 - 2009:12∗

NLD 1977:I - 2009:IV 1957:1 - 2009:12 2001:1 - 2009:12∗

NOR 1966:I - 2010:I 1957:1 - 2009:12 1972:I - 2010:IV

NZD 1982:II - 2009:IV 1987:2 - 2009:VI 1985:IV - 2010:1

PRT 1977:I - 2009:IV 1957:1 - 2009:12 1983:II - 2010:I

SWE 1986:I - 2010:I 1957:1 - 2009:12 1965:5 - 2009:12∗

UK 1957:I - 2009:IV 1957:1 - 2009:12 1956:I - 1992:II;

1992:4 - 2009:12∗

∗ Indicates data from the OECD database
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Table 1 – Country-specific dates of Peaks and Troughs detected with HFS 

Australia Austria Belgium Canada 
Aug-1958 to Dec-2009 Jan-1958 to Dec-2009 Jan-1955 to Dec-2009 Jan-1956 to Dec-2009 

Peak Trough Peak Trough Peak Trough Peak Trough 
Aug‐1960  Jul‐1961  Nov‐1960  Oct‐1961  Feb‐1960  Sep‐1961  Jun‐1957  Jan‐1958 
Aug‐1962  Apr‐1963  Nov‐1963  Nov‐1965  Jun‐1963  Jun‐1965  Oct‐1959  Jan‐1961 
Aug‐1964  Jan‐1965  Feb‐1966  Jul‐1966  May‐1969  Jun‐1971  Feb‐1962  Jul‐1963 
Aug‐1965  Jan‐1966  Mar‐1968  Aug‐1969  May‐1972  Nov‐1973  Nov‐1965  Jan‐1967 
Aug‐1971  Jan‐1972  Feb‐1972  Jul‐1972  Mar‐1974  Jul‐1975  Jul‐1967  Jun‐1968 
Feb‐1974  Jan‐1975  Aug‐1974  Apr‐1975  Feb‐1976  Aug‐1977  Apr‐1969  Mar‐1970 
Jun‐1977  Oct‐1977  Apr‐1977  Apr‐1978  Jul‐1981  Nov‐1982  Jun‐1973  May‐1974 
Oct‐1981  Oct‐1982  Nov‐1979  Jul‐1981  Aug‐1983  Jun‐1985  Aug‐1974  Mar‐1975 
Nov‐1985  Jul‐1986  Nov‐1983  Nov‐1985  Feb‐1988  Jul‐1988  May‐1976  Apr‐1977 
Feb‐1990  Jul‐1990  May‐1992  Jan‐1993  Dec‐1988  Jun‐1990  May‐1981  Jul‐1982 
Aug‐1994  Jan‐1995  Jan‐1995  Jan‐1996  Aug‐1992  Jan‐1993  Nov‐1985  Oct‐1986 
May‐1996  Oct‐1996  Dec‐1999  Apr‐2000  Feb‐1995  Jul‐1995  Feb‐1989  Feb‐1991 
Aug‐2000  Jan‐2001  Nov‐2000  Feb‐2001  Nov‐1997  Apr‐1998  Jan‐1995  Jan‐1996 
Aug‐2008  Jan‐2009  May‐2008  Jun‐2009  Nov‐1999  Mar‐2001  Aug‐2000  Jul‐2001 
    Aug‐2008  Jan‐2009  Nov‐2007  Apr‐2009 

Switzerland Chile Denmark Germany 
Jan-1955 to Dec-2009 Jan-1959 to Dec-2009 Feb-1958 to Dec-2009 Jan-1959 to Dec-2009 

Peak Trough Peak Trough Peak Trough Peak Trough 
May‐1964  Apr‐1965  Feb‐1959  Sep‐1960  Aug‐1961  Jan‐1962  Oct‐1959  Oct‐1961 
Aug‐1969  Apr‐1971  Nov‐1961  Jul‐1964  Aug‐1969  Jan‐1970  Aug‐1965  Sep‐1965 
Nov‐1973  Apr‐1975  Aug‐1967  Jul‐1969  Nov‐1973  Jan‐1975  Feb‐1966  Apr‐1967 
May‐1980  Jan‐1981  Apr‐1981  Sep‐1982  Feb‐1979  Jul‐1979  Feb‐1969  Jul‐1969 
Aug‐1981  Jul‐1982  May‐1983  Jul‐1987  Feb‐1980  Jan‐1981  Mar‐1970  Jan‐1972 
Feb‐1990  Apr‐1990  Feb‐1990  Jul‐1990  May‐1986  Jan‐1987  Aug‐1973  Jan‐1975 
Feb‐1995  Oct‐1995  Sep‐1993  Oct‐1993  Feb‐1988  Jul‐1988  May‐1976  Apr‐1977 
Aug‐2000  Jan‐2002  Nov‐1995  Mar‐1996  Feb‐1989  Jan‐1990  Feb‐1984  Jan‐1985 
Nov‐2007  Apr‐2009  Nov‐1998  Apr‐1999  Aug‐1990  Jan‐1991  Feb‐1991  Jan‐1992 
    Oct‐2008  Apr‐2009  Nov‐1992  Jul‐1993  Apr‐2008  Jan‐2009 
        May‐1994  Jan‐1996     
        Nov‐1997  Apr‐1998     
        Nov‐2000  Apr‐2001     
        Aug‐2001  Oct‐2001     
    Aug‐2004  Jul‐2005     
    Aug‐2008  Apr‐2009     
 

  



Table 1 – Country-specific dates of Peaks and Troughs detected with HFS (cont.) 

Spain Finland France Greece 
Jan-1962 to Dec-2009 Jan-1958 to Dec-2009 Jan-1958 to Dec-2009 Feb-1976 to Dec-2009 

Peak Trough Peak Trough Peak Trough Peak Trough 
Jul‐1962  May‐1963  Apr‐1960  Nov‐1960  Mar‐1964  Jul‐1964  May‐1979  Oct‐1979 
Feb‐1964  Jul‐1965  Jan‐1962  Jun‐1962  May‐1973  Jan‐1975  Nov‐1989  Oct‐1990 
Oct‐1966  May‐1968  Mar‐1964  Nov‐1964  Sep‐1976  Oct‐1977  Apr‐1999  Oct‐1999 
Feb‐1974  Jul‐1975  Jan‐1967  May‐1967  May‐1982  Apr‐1983  Nov‐2000  Nov‐2001 
Feb‐1977  Oct‐1977  Sep‐1985  Apr‐1986  Aug‐1984  Jan‐1985  Aug‐2003  Jan‐2004 
Aug‐1991  Oct‐1991  Feb‐1990  Mar‐1990  Oct‐1985  Dec‐1986  Aug‐2006  Jan‐2007 
Feb‐1992  Jan‐1993  Jul‐1990  Sep‐1991  Mar‐1988  Sep‐1988  Jul‐2007  May‐2009 
Mar‐2000  Nov‐2000  Feb‐2001  Jul‐2001  Feb‐1992  Jan‐1993     
Aug‐2007  Apr‐2009  May‐2008  Dec‐2008  May‐1995  Apr‐1996     
        Jun‐1998  Dec‐1998     
        Nov‐1999  Apr‐2002     
        Nov‐2007  Jan‐2009     

Ireland Italy Japan South Korea 
July-1976 to Dec-2009 Jan-1958 to Dec-2009 Jan-1956 to Dec-2009 Feb-1961 to Dec-2009 

Peak Trough Peak Trough Peak Trough Peak Trough 
May‐1979  Oct‐1979  May‐1961  Apr‐1962  Sep‐1957  Jan‐1958  Nov‐1961  Apr‐1962 
Nov‐1989  Oct‐1990  Apr‐1963  Jan‐1965  Jan‐1962  Jun‐1962  May‐1965  Oct‐1965 
Apr‐1999  Oct‐1999  Nov‐1967  Oct‐1968  Jun‐1964  Apr‐1965  May‐1966  Oct‐1966 
Nov‐2000  Nov‐2001  Jan‐1971  Apr‐1972  Mar‐1970  Apr‐1971  Feb‐1974  Jul‐1974 
Aug‐2003  Jan‐2004  Jul‐1973  Apr‐1975  Oct‐1973  Jan‐1974  May‐1978  Oct‐1978 
Aug‐2006  Jan‐2007  Dec‐1976  Nov‐1977  Sep‐1980  Oct‐1980  Feb‐1979  Apr‐1980 
Jul‐2007  May‐2009  Nov‐1991  Jan‐1993  May‐1991  Oct‐1992  Feb‐1984  Feb‐1984 
    Apr‐2008  Feb‐2009  Feb‐1997  Jul‐1998  May‐1987  Apr‐1988 
        Nov‐2000  Oct‐2001  Feb‐1992  Jul‐1992 
        Feb‐2008  Jan‐2009  Feb‐1994  Feb‐1995 
            Aug‐1997  May‐1998 
            Aug‐2000  Jan‐2001 
            Apr‐2002  Jun‐2003 
            May‐2004  Oct‐2004 
        Apr‐2008  Dec‐2008 
 

  



Table 1 – Country-specific dates of Peaks and Troughs detected with HFS (cont.) 

Netherlands Norway New Zealand Portugal 
Jan-1958 to Dec-2009 Oct-1957-Dec-2009 May-1985 to Dec-2009 Jan-1958 to Dec-2009 

Peak Trough Peak Trough Peak Trough Peak Trough 
Feb‐1978  Jan‐1979  Nov‐1967  Apr‐1968  Feb‐1984  Jul‐1984  Jan‐1959  Jul‐1959 
Feb‐1980  Jan‐1983  May‐1970  Oct‐1970  Nov‐1987  Apr‐1988  Jan‐1961  Jul‐1961 
Jun‐1984  Jul‐1985  Nov‐1972  Jan‐1973  May‐1995  Jan‐1996  Oct‐1963  Jul‐1964 
Aug‐1986  Apr‐1987  Feb‐1980  Jul‐1980  May‐1997  Apr‐1998  Dec‐1965  Aug‐1966 
Feb‐1991  Aug‐1991  Aug‐1987  Dec‐1987  Nov‐1999  Oct‐2000  Dec‐1968  Sep‐1969 
Jan‐1997  Sep‐1997  May‐1991  Oct‐1991  Nov‐2004  Jan‐2005  Dec‐1973  Feb‐1975 
Nov‐1999  Dec‐2001  Aug‐2002  Apr‐2003  Nov‐2007  Apr‐2008  Feb‐1978  Apr‐1978 
Jul‐2008  Apr‐2009  May‐2008  Oct‐2008      Dec‐1978  Jun‐1979 
    Mar‐2009  Jul‐2009      May‐1981  Apr‐1982 
            Nov‐1982  Apr‐1983 
            Feb‐1985  Jul‐1985 
            May‐1988  Jul‐1988 
            Feb‐1992  Apr‐1992 
            Aug‐2008  Jan‐2009 

Sweden UK US (HFS) US(NBER) 
Jan-1958 to Dec-2009 Feb-1957 to Dec-2009 Jan-1958 to Dec-2009 Jan-1958 to Dec-2009 

Peak Trough Peak Trough Peak Trough Peak Trough 
Dec‐1959  Jul‐1960  May‐1957  Jan‐1958  Mar‐1962  Nov‐1962  Apr‐1960  Feb‐1961 
Sep‐1965  Mar‐1966  May‐1960  Oct‐1961  Feb‐1966  Apr‐1967     
Nov‐1969  May‐1970  Feb‐1964  Jul‐1965  Oct‐1969  Feb‐1970  Dec‐1969  Nov‐1970 
Jun‐1976  Jul‐1978  May‐1973  Jan‐1974  Jul‐1973  Jan‐1975  Nov‐1973  Mar‐1975 
Apr‐1980  Dec‐1981  Aug‐1974  Jul‐1975  Mar‐1979  Oct‐1979  Jan‐1980  Jul‐1980 
Nov‐1983  Jun‐1984  Nov‐1979  May‐1980  Jul‐1981  Sep‐1982  Jul‐1981  Nov‐1982 
Dec‐1990  Dec‐1991  May‐1984  Jul‐1984  May‐1984  Apr‐1985     
Aug‐1994  Aug‐1994  May‐1985  Jan‐1986  May‐1990  Apr‐1991  Jul‐1990  Mar‐1991 
Feb‐1996  Mar‐1997  Feb‐1988  Oct‐1989  May‐2000  May‐2001  Mar‐2001  Nov‐2001 
Feb‐2001  Jan‐2002  May‐1990  Apr‐1991  Sep‐2007  May‐2009  Dec‐2007  Jun‐2009 
Aug‐2006  Nov‐2007  Mar‐1998  Jul‐1998         
Jul‐2008  Dec‐2009  May‐2000  Jan‐2001         
    Dec‐2002  Dec‐2002         
    Feb‐2004  Jan‐2005         
  Aug‐2007  Oct‐2007         
  Mar‐2008  Apr‐2009         
 

  



Table 2 – Dates of Peaks and Troughs for the Global Business Cycle 

Peak Trough 
January 1957 December 1957 

May 1960 July 1961 
November 1973 January 1975 

April 1980 April 1980 
August 2000 May 2001 

February 2008 April 2009 
 

Notes: these dates correspond to episodes in which the wiring ratio exceeded 0.14. 



Figure 1 – Choosing the event for the HFS Algorithm 
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Notes: smooth kernel density plots of the empirical distribution of the U.S. industrial Production Index 
for expansion and recession periods as defined by the NBER. The vertical line indicates the 30th 
percentile of the distribution of the IP index. Using such a cut-off as a rule of thumb to determine when 
the economy is in expansion and when in recession generates a true positive rate of 78% and a false 
positive rate of 20%. 



 

Figure 2 – Summary of individual recession dates calculated by HFS against the NBER’s BCDC.  

 

Notes: The top graph indicates for each series, periods where HFS classified the indicator as being in 
“recession.” The top row labeled “BCDC” is for reference and indicates the recession dates provided by 
the NBER. The bottom graph displays the wiring ratio associated with the ratio of pairs of indicators 
simultaneously classified as being in recession at a given point in time, relative to the total number of 
possible pairs. 



 

Figure 3 – Detecting recessions with HFS. Optimal detection threshold 
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Notes: the figure displays the incidence rate when less than 3 indicators are available and thereafter the 
wiring ratio. The optimal threshold is calculated to optimize the net correct classification skill using the 
NBER dates (shaded) as the benchmark. 



 

Figure 4 – HFS versus NBER recessions against economic activity 
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Notes: The aggregate activity index is constructed as the first principal component of the seven economic 
indicators used by the NBER to determine peak and trough dates. The left panel displays the HFS 
recessions shaded in grey whereas the right panel displays NBER recessions. 

 



 

Figure 5 – U.K. yearly growth rate of GDP against HFS recessions 
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Notes: yearly percentage growth in U.K. GDP. Shaded areas are recessions detected using the HFS 
algorithm. 

 

 

 



Figure 6 – Yearly growth rates of GDP against HFS recessions, all remaining OECD countries 
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Figure 6  (cont.) – Yearly growth rates of GDP against HFS recessions, all remaining OECD countries 
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Figure 6  (cont.) – Yearly growth rates of GDP against HFS recessions, all remaining OECD countries 
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Figure 7 – HFS Chronology per country based on industrial production 

 

Notes: HFS recession periods denoted as bars for each country listed. 
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Figure 8 – HFS Chronology per country based on GDP 

 

 

 

Notes: HFS recession periods denoted as bars for each country listed. 
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Figure 9 – HFS Chronology per country based on employment 

 

 

Notes: HFS recession periods denoted as bars for each country listed. 
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Figure 10 – Wiring ratio of country-specific HFS recession and resulting global recession indicator 

 

 

 

Notes: the wiring ratio is constructed as follows. For every period, count the number of pairs of countries 
whose HFS chronology indicates that period was a recession and normalize by the total number of 
possible pairs. Using the threshold of 0.14 (which corresponds to 9 or more countries simultaneously 
experiencing a recession) displayed in the figure as a horizontal line, we then determined the dates of 
“global” business cycles. 
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