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Abstract
We argue in favor of a departure from the standard equilibrium approach
in game theory in favor of the less ambitious goal of describing only the
actual behavior of rational players. We investigate the notion of rationality in
behavioral models of extensive-form games (allowing for imperfect infor-
mation), where a state is described in terms of a play of the game instead of
a strategy profile. The players’ beliefs are specified only at reached decision
histories and are modeled as pre-choice beliefs, allowing us to carry out the
analysis without the need for (objective or subjective) counterfactuals. The
analysis is close in spirit to the literature on self-confirming equilibrium, but
it does not rely on the notion of strategy. We also provide a characterization
of rational play that is compatible with pure-strategy Nash equilibrium.

October 29, 2021

1 Introduction

What constitutes a rational solution of an extensive-form game? Different
approaches have been put forward in the literature.

1. The equilibrium approach. Within this approach the notion of rationality
is captured through the notion of Nash equilibrium or one of its refinements.



2 Rational play

Consider, for example, the game of Figure 1 and the Nash equilibrium (a, a,M).
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Figure 1: An extensive game with imperfect information.

The strategy of each player is a best response to the strategies of her opponents
and can thus be taken to be a rational choice. However, how should Player 3’s
strategy M be interpreted? Just like any other strategy of Player 3, M is a ra-
tional ”choice” merely because Player 3’s information set is not reached (given
that Players 1 and 2 play (a, a)). If M is to be interpreted as the counterfactual
“Player 3 would play M if her information set were to be reached” then one can
question the rationality of M on the basis of the fact that R is strictly better than
M at each history in Player 3’s information set. Thus refinements of Nash equi-
librium, such as sequential equilibrium (Kreps and Wilson (1982)) and perfect
Bayesian equilibrium (Fudenberg and Tirole (1991), Bonanno (2013b)), define
a solution not merely as a strategy profile but as an assessment 〈σ, µ〉, where σ
is a strategy profile and µ is a “system of beliefs” consisting of a list of prob-
ability distributions, one for every information set, representing the (possibly
counterfactual) beliefs of the corresponding players at those information sets.
The notion of sequential rationality then restricts choices at information sets
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to those that are optimal given the specified beliefs and the strategies of the
opponents. Sequential rationality rules out strategy M for Player 3 in the game
of Figure 1.
Consider now a different Nash equilibrium, namely (a, a,R) together with a
system of beliefs µ that assigns probability 1 to histories a and bb. Such an
assessment satisfies sequential rationality and constitutes a rational solution if
one subscribes to the notion of weak sequential equilibrium (Myerson 1991, p.
170) or perfect Bayesian equilibrium (as defined in Bonanno (2013b)) but not
if one subscribes to the notion of sequential equilibrium. The latter requires
beliefs to satisfy a property called “consistency” which entails that µ(bb) = 0.1

But if Player 3 assigns zero probability to history bb then the only sequentially
rational choice is L. Thus there is no sequential equilibrium where the strategy
profile is (a, a,R). In my opinion, there are no compelling reasons to rule out the
belief µ(bb) = 1 and thus (a, a,R) can indeed be considered a rational solution
of the game of Figure 1, for the following reason. For strategic-form games,
Aumann (Aumann 1987, p. 16) put forward the thesis – which is by now
generally accepted – that Player 3, while recognizing that Players 1 and 2 act
independently, may nevertheless have beliefs about their choices that display
correlation, because she believes that some unobserved common factor has
helped determine the choices of both of her opponents. But then a similar
argument can be applied to the game of Figure 1: having observed that there
was a deviation from the play aa, Player 3 can reasonably come to believe that
some unobserved common factor has led both of her opponents to deviate from
a to b, that is, she can reasonably form the belief µ(bb) = 1. This argument calls
into question restrictions on beliefs that are incorporated in several refinements
of Nash equilibrium.

2. The self-confirming equilibrium approach. A second strand of the lit-
erature identifies rational play in extensive-form games with the notion of
self-confirming equilibrium, introduced in Fudenberg and Levine (1993).2 A
self-confirming equilibrium is a strategy profile satisfying the property that

1As originally defined by Kreps and Wilson (Kreps and Wilson (1982)), consistency is a topo-
logical notion, but it can be redefined in a way that does not make any reference to sequences of
completely mixed strategies: see Bonanno (2016).

2Similar notions are put forward in Battigalli and Guaitoli (1997), Greenberg (2000), Greenberg
et al. (2009). Dekel et al. (1999; 2002) provide a refinement of self-confirming equilibrium that
imposes constraints on the players’ beliefs about what actions an opponent could take at an off-
path information set and Fudenberg and Kamada (2015) provide a generalization of the notion of
self-confirming equilibrium. The related expression ‘conjectural equilibrium’ is mostly used in the
context of strategic-form games; it was introduced in this context by Battigalli (1987), Gilli (1987)
and is defined as a situation where each player’s strategy is a best response to a conjecture about the
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each player’s strategy is a best response to her beliefs about the strategies of her
opponents, and each player’s beliefs are correct along the equilibrium play. At
a self-confirming equilibrium no player receives information that contradicts
her beliefs, even though her beliefs about play at off-path information sets may
be incorrect. For example, in the game of Figure 1, the strategy profile (a, a,R)
is a self-confirming equilibrium if Players 1 and 2 share the belief that Player
3 would play R if her information set were to be reached. Note, however, that
at a self-confirming equilibrium different players are allowed to have different
beliefs about the hypothetical choice of a third player at an unreached infor-
mation set. As a consequence, a self-confirming equilibrium need not be a
Nash equilibrium. Consider, for example, the game of Figure 2, taken from
(Fudenberg and Levine 1993, p. 533).
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Figure 2: The play aA is consistent with the notion of self-confirming equilib-
rium.

Both (a,A,L) and (a,A,R) are self-confirming equilibria sustained by Player 1’s
belief (correct in the former, erroneous in the latter) that Player 3 would play L
and Player 2’s belief (erroneous in the former, correct in the latter) that Player 3

other players’ strategies and any information acquired after the play of the game does not induce
the player to change her conjecture. It was later strengthened by Rubinstein and Wolinsky (1994)
by adding the requirement of common knowledge of rationality. Both the weaker and the stronger
notions were further analyzed by Gilli (1999), while Esponda (2013) provided an explicit epistemic
characterization.
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would play R.3 Note that in the game of Figure 2 there is no Nash equilibrium
that yields the play aA. Thus a self-confirming equilibrium need not be a Nash
equilibrium.

In the self-confirming equilibrium literature, a solution is still defined in
terms of a strategy profile; in particular, a self-confirming equilibrium specifies
choices at all unreached information sets. From a conceptual point of view,
however, it is not clear what role choices at unreached information sets play
beyond expressing the beliefs of the active players along the equilibrium path.
For example, consider again the game of Figure 2 and a situation where Player
1 plays a believing that Player 3 would play L and Player 2 plays A believing
that Player 3 would play R. Why is this not enough as a “solution”? Why the
need to settle the counterfactual concerning what Player 3 would truly do if
her information set were to be reached?4 Furthermore, it is not clear how the
counterfactual could be settled: both L and R can be justified as hypothetical
rational choices for Player 3. The standard theory of counterfactuals, due to
Robert Stalnaker and David Lewis (Stalnaker (1968), Stalnaker and Thomason
(1970), Lewis (1973)), postulates a family of similarity relations on the set of
possible worlds (one for each possible world) and the sentence “if φ were the
case thenψwould be the case” is declared to be true at a possible worldω ifψ is
true at the most similar world(s) toωwhere φ is true. At a world where Players
1 and 2 play (a,A), we can take φ to be the sentence “Player 3’s information set
is reached” and ψ the sentence “Player 3 plays L”. Then the sentence “if φwere
the case then ψ would be the case” would be true at the actual world (where
Player 3’s information set is not reached, because Players 1 and 2 play (a,A))
if and only if the most similar world to the actual world is one where Player 3
plays L. But how are we to determine if the most similar world to the actual
world is one where Player 3 plays L or one where Player 3 plays R?

In general, pinning down the counterfactual choices that would be made at
unreached information sets is not a straightforward matter. Consider, for ex-
ample, the game illustrated in Figure 3 due to Perea (Perea 2010, p. 169), where

3As Greenberg (2000) points out, Player 3 gains from the uncertainty in the minds of Players
1 and 2 and, if asked what she would do, she would refuse to answer, since her payoff is largest
when Players 1 and 2 play aA.

4One answer could be: because we want to know which player has false beliefs about Player
3. But in what way would knowing this be useful? After all, presumably Players 1 and 2 are very
confident of what they believe and the falsity of their beliefs can only be judged from an external
point of view. Another answer could be: because we want to determine what would happen if
either Player 1 made a mistake and played b instead of a or Player 2 made a mistake and played
B instead of A. But why should a rationality-based solution concept be built on the possibility of
players making mistakes?
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Player 1 can either play b and end the game or play a in which case she and
Player 2 play a “simultaneous” game. Using backward-induction reasoning,5
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Figure 3: The conflict between backward induction and forward induction.

one first applies the procedure of iterative deletion of strictly dominated strate-
gies to the subgame that starts at history a to obtain (c, e) and then one concludes
that Player 1 will play b.6 Thus the “rational solution” would be the strategy
profile (b, e). On the other hand, applying forward-induction reasoning,7 one
first eliminates Player 1’s strategy ac (since it is strictly dominated by b) and
Player 2’s strategy g; then one eliminates Player 1’s strategy ad and Player 2’s
strategy e, with the conclusion that Player 1 will play b. Thus the “rational
solution” would be the strategy profile (b, f ). Note that the prediction in terms

5As captured, for example, by the notion of common belief in present and future rationality
(Perea (2014)), or forward belief in rationality (Baltag et al. (2009), Bonanno (2014)). See also Penta
(2009).

6In the subgame, for Player 2 g is strictly dominated (by both e and f ); after deleting g, for Player
1 d becomes strictly dominated by c; after deleting d, for Player 2 f becomes strictly dominated by
e.

7As captured, for example, by the notion of extensive-form rationalizability (Pearce (1984)),
which is characterized by common strong belief in rationality (Battigalli and Siniscalchi (2002)).
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of play is the same, namely that Player 1 would end the game by playing b,
but the answer to the counterfactual question “what would Player 2 do at her
unreached information set?” is different. Is it essential – or even important –
that we provide an answer to this counterfactual question? Or can we rely on
a purely behavioral theory of rational play, whose aim is merely to predict the
actual behavior of rational players and not what would happen at unreached
information sets?

In this paper we outline the elements of such a theory. The framework is
rich enough to enable one to explicitly model the actual choices of the players
and the beliefs that justify those choices. Thus we are aiming for an epistemic,
or rather doxastic,8 theory of rational behavior in extensive-form games. In the
next section we elaborate on the distinction between a strategy-based approach
and a behavior-based approach.

2 Strategy-based models versus behavioral models

The aim of the so-called epistemic foundation program in game theory is to char-
acterize, for any game, the choices made by rational players who know the
structure of the game and the preferences of their opponents and who recog-
nize each other’s rationality. The expression ‘mutual recognition of rationality’
has been interpreted in the literature as ‘common belief in rationality’. Earlier
notions – such as rationalizability (Bernheim (1984), Pearce (1984)) – captured
only informally the concept of common belief in rationality. The first explicitly
epistemic analysis is due to Aumann (1987), who provided an epistemic char-
acterization of the notion of correlated equilibrium and Tan and Werlang (1988)
who provided a doxastic characterization of rationalizability.9

There are two types of epistemic/doxastic models used in the game-theoretic
literature: the so-called “state-space” models and the “type-space” models. We
will adopt the former.10

In the standard state-space model of a given game, one takes as starting
point a set of states (or possible worlds) and associates with every state a
strategy for every player. If ω is a state and si is the strategy of player i at ω

8‘Epistemic’ means ‘knowledge-based’, while ‘doxastic’ means ’belief-based’. The crucial dis-
tinction between knowledge and belief is that what is known must be true, while beliefs can be
erroneous. From a conceptual point of view, it is essential to allow for the possibility of erroneous
beliefs (see (Stalnaker 1996, p.153)).

9Other notable early contributions are Brandenburger and Dekel (1987), Stalnaker (1994; 1996).
For an overview see Battigalli and Bonanno (1999), Perea (2012), Bonanno (2015a)

10Note that there is a straightforward way of translating one type of model into the other.
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then the interpretation is that, at that state, player i plays si. If the game is
simultaneous (so that there cannot be any unreached information sets), then
there is no ambiguity in the expression “player i plays si”, but if the game is an
extensive-form game then the expression is ambiguous. Consider, for example,
the game of Figure 1 and a state ω where both Players 1 and 2 play a, so that
Player 3’s information set is not reached. Suppose that the strategy of Player
3 associated with state ω is R. In what sense does Player 3 “play” R? Does
it mean that, before the game starts, Player 3 has made a plan to play R if
her information set were to be reached? Or does it mean (in a Stalnaker-Lewis
interpretation of the counterfactual) that in the state most similar toωwhere her
information set is actually reached, Player 3 plays R?11 Or is Player 3’s strategy
R to be interpreted not as a statement about what Player 3 would actually do
but as an expression of what each of her opponents thinks that Player 3 would
do?12

While most of the literature on the epistemic foundations of game theory
makes use of strategy-based models, a few papers13 follow a behavioral approach
by associating with each state a play (or outcome) of the game. The challenge
in this class of models is to capture the reasoning of a player who takes a
particular action while considering what would happen if she took a different
action. The most common approach is to postulate, for each player, a set of
conditional beliefs, where the conditioning events are represented by possible
histories in the game (including off-path histories).14 Here we will follow the
simpler approach put forward in Bonanno (2013a; 2014; 2018), which models
the “deliberation-stage” beliefs of a player. Previously, the literature captured
the “after-choice” beliefs; in particular, it was based on the assumption that if
at a state a player takes action a then the player knows that she takes action a.
The deliberation-stage approach, on the other hand, models the beliefs of the
player at the time when she is considering all the actions available to her and
treats each of those actions as “open possibilities”. Thus her beliefs take the

11Halpern (2001) adopts this interpretation after pointing out that in this type of models “one
possible culprit for the confusion in the literature regarding what is required to force the backward
induction solution in games of perfect information is the notion of a strategy”.

12The conceptual issues that arise in strategy-based models of extensive-form games are dis-
cussed at length in Bonanno (2015b).

13The seminal contribution is Samet (1996), followed by Baltag et al. (2009), Battigalli et al. (2013),
Bonanno (2013a; 2014; 2018). With the exception of Bonanno (2014), this literature has focused on
games with perfect information.

14Samet (1996) uses extended information structures to model hypothetical knowledge (see
Halpern (1999) for a critical discussion of extended information structures), Baltag et al. (2009) use
plausibility relations and Battigalli et al. (2013) use conditional probability systems.
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following form: “if I take action a then the outcome will be x and if I take action
b then the outcome will be y”. In this approach the conditional “if p then q”
is interpreted as a material conditional, that is, as equivalent to “either not p or
q”.15 Hence this analysis does not rely in any way on (objective or subjective)
counterfactuals; furthermore, only the beliefs of the active players at the time of
choice are modeled: no initial beliefs nor belief revision policies are postulated. The
approach is described in the next section, after first recalling the history-based
definition of extensive-form game16 and the notion of qualitative belief.

3 Behavioral models of extensive-form games

3.1 The history-based definition of extensive-form game

For simplicity we will restrict attention to games with ordinal payoffs and
without chance moves. We will not, however, make the common assumption
of “no relevant ties” or genericity of payoffs; furthermore we allow for imperfect
information.

If A is a set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈

A∗ and 1 ≤ i ≤ k, the sequence h′ = 〈a1, ..., ai〉 is called a prefix of h and we denote
this by h′ - h; furthermore, if h′ - h and h′ , h then we write h′ ≺ h and say that
h′ is a proper prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote the sequence
〈a1, ..., ak, a〉 ∈ A∗ by ha.

A finite extensive form without chance moves is given by the following elements:

1. A finite set N of players.

2. A finite set A of actions.

3. A finite set of histories H ⊆ A∗ which is closed under prefixes (that is,
if h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The null history 〈〉 ,
denoted by∅, is an element of H and is a prefix of every history. A history
h ∈ H such that, for every a ∈ A, ha < H, is called a terminal history or play.
The set of terminal histories is denoted by Z. D = H\Z denotes the set of
non-terminal or decision histories.

15In Bonanno (2021) it is argued that, contrary to a common view, the material conditional is
indeed sufficient to model deliberation.

16See, for example, Osborne and Rubinstein (1994).
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4. A function ι : D → N that assigns to each decision history h the player
who moves, or is active, at h.17 For every decision history h ∈ D, we denote
by A(h) the set of actions available at h (to player ι(h)), that is, a ∈ A(h) if
and only if a ∈ A and ha ∈ H.

5. For every player i ∈ N, an equivalence relation ≈i on Di, where Di =
{h ∈ D : i = ι(h)} is the set of histories at which player i is active. The
interpretation of h ≈i h′ is that, when choosing an action at history h ∈ Di,
player i does not know whether she is moving at h or at h′. The equivalence
class of h ∈ D is denoted by [h] and is called an information set of player
ι(h); thus [h] = {h′ ∈ Dι(h) : h ≈ι(h) h′}. The following restriction applies
to information sets: if h ≈i h′ then A(h′) = A(h), that is, the set of actions
available to a player is the same at any two histories that belong to the
same information set of that player. We also assume the property of
perfect recall, according to which a player always remembers her own past
moves: if h1, h2 ∈ Di, a ∈ A(h1) and h1a is a prefix of h2 then, for every h′

such that h′ ≈i h2, there exists an h ≈i h1 such that ha is a prefix of h′.
If every information set is a singleton (that is, if h ≈ι(h) h′ implies that
h = h′, for every decision history h) then the game is said to have perfect
information, otherwise it is said to have imperfect information.

From now on, non-null histories will be denoted succinctly by listing the
corresponding actions, without brackets, without commas and omitting the
empty history: thus instead of writing 〈∅, a1, a2, a3, a4〉 we will simply write
a1a2a3a4.

Given an extensive form, one obtains an extensive game with ordinal payoffs
by adding, for every player i ∈ N, a complete and transitive preference relation
Ri over the set Z of terminal histories (the interpretation of zRiz′ is that player
i considers terminal history z to be at least as good as terminal history z′). It is
customary to replace the preference relation Ri with a utility (or payoff ) function
ui : Z → R (where R denotes the set of real numbers) satisfying the property
that ui(z) ≥ ui(z′) if and only if z Riz′.

We only consider ordinal payoffs and qualitative beliefs in order to highlight
the important features of our approach in as simple a framework as possible.
The analysis can be extended to the case where the players’ preferences are
represented by von Neumann-Morgenstern utility functions and beliefs are

17For notational simplicity we do not allow more than one player to be active at a decision history.
A simultaneous move by, say, Players 1 and 2 is thus represented in the traditional way by having
Player 1 move first followed by Player 2, who is not informed of Player 1’s move.
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probabilistic.18

3.2 Qualitative beliefs

Before introducing the definition of a model of a game, we recall the following
facts about belief relations and operators.

Let Ω be a set, whose elements are called states (or possible worlds). We
represent the beliefs of an agent by a binary relation B ⊆ Ω × Ω. The inter-
pretation of (ω,ω′) ∈ B, also denoted by ωBω′, is that at state ω the agent
considers state ω′ possible; we also say that ω′ is reachable from ω by B. For
every ω ∈ Ω we denote by B(ω) the set of states that are reachable from ω, that
is, B(ω) = {ω′ ∈ Ω : ωBω′}.
B is transitive ifω′ ∈ B(ω) impliesB(ω′) ⊆ B(ω) and it is euclidean ifω′ ∈ B(ω)

implies B(ω) ⊆ B(ω′). We will assume throughout that the belief relations are
transitive and euclidean (see below for an interpretation of this assumption in
terms of introspection).

Graphically, we represent a transitive and euclidean belief relation as shown
in Figure 4, by adopting the following convention: for any two statesω,ω′ ∈ Ω,
ω′ ∈ B(ω) if and only if either ω and ω′ are enclosed in the same rounded
rectangle or there is an arrow from ω to the rounded rectangle containing ω′.19

a b g

Figure 4: The relation B = {(α, β), (α, γ), (β, β), (β, γ), (γ, β), (γ, γ)}.

18The traditional approach postulates that every player has a preference relation over the set of
lotteries over terminal histories that satisfies the axioms of expected utility. This is not an innocuous
assumption, since the game under consideration is implicitly taken to be common knowledge
among the players. Thus not only is it commonly known who the players are, what choices
they have available and what the possible outcomes are, but also how each player ranks those
outcomes. While it is certainly reasonable to postulate that a player knows her own preferences,
it is much more demanding to assume that she knows the preferences of her opponents. If those
preferences are expressed as ordinal rankings, this assumption is less troublesome than in the case
where preferences also incorporate attitudes to risk (that is, the utility functions that represent
those preferences are von Neumann-Morgenstern utility functions).

19In other words, for any two possible worlds ω and ω′ that are enclosed in a rounded rectangle,
{(ω,ω), (ω,ω′), (ω′, ω), (ω′, ω′)} ⊆ B and, if there is an arrow from a state ω to a rounded rectangle,
then, for every ω′ in that rectangle, (ω,ω′) ∈ B.
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The object of beliefs are propositions or events (i.e. sets of states; events are
denoted by bold-type capital letters). We say that at state ω the agent believes
event E ⊆ Ω if and only if B(ω) ⊆ E. For example, in the case illustrated in
Figure 4, at state α the agent believes event {β, γ}. If E is an event then the
sentence “the agent believes E” can itself be interpreted as an event, denoted
by BE

def
={ω ∈ Ω : B(ω) ⊆ E}. For example, in the case illustrated in Figure

4, B{β, γ} = {α, β, γ}. Thus one can define a belief operator B : 2Ω
→ 2Ω that

associates with every event E the (possibly empty) eventBE that the individual
believes E. It is well known that transitivity of the relation B corresponds to
positive introspection of beliefs (if the individual believes E then she believes
that she believes E: BE ⊆ BBE) and euclideanness corresponds to negative
introspection (if the individual does not believe E then she believes that she does
not believe E: ¬BE ⊆ B¬BE; for every event F, ¬F denotes the complement of
F in Ω).20

We say that, at stateω, event E is true ifω ∈ E. In the case illustrated in Figure
4, at state α the agent erroneously believes event {β, γ}: α ∈ B{β, γ} but the event
{β, γ} is not true at α; this is due to the fact that α < B(α). We say that at state
ω the agent has correct beliefs if ω ∈ B(ω). Thus we can define the event that the
agent has correct beliefs, denoted by T∗ (where ‘T’ stands for ‘true’), as follows:

T∗ = {ω ∈ Ω : ω ∈ B(ω)}. (1)

For example, in the case illustrated in Figure 4, T∗ = {β, γ}.

Remark 1. Note that it is a consequence of euclideanness of the relation B that the
agent always believes that her beliefs are correct: if ω′ ∈ B(ω) then ω′ ∈ B(ω′)
or, equivalently, BT∗ = Ω.

3.3 Behavioral models of games

To define a model of a game, we begin with a set of states Ω and interpret each
state in terms of a particular play of the game by means of a function ζ : Ω→ Z
that associates, with every state ω, a terminal history ζ(ω) ∈ Z. Next we add,
for every decision history h ∈ D, a binary relation Bh on Ω representing the
beliefs of ι(h), the active player at h;21 however, we do so only at histories that

20For more details see Battigalli and Bonanno (1999).
21It would be more precise to write Bι(h) instead of Bh, but we have chosen the lighter notation

since there is no ambiguity, because we have assumed that at every decision history there is a
unique player who is active there.
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are actually reached at a given state, in the sense that Bh(ω) , ∅ if and only if
h ≺ ζ(ω).

Definition 3.1. Given an extensive-form game, a model of it is a tuple 〈Ω, ζ, {Bh}h∈D〉

where

• Ω is a set of states.

• ζ : Ω→ Z.

• For every h ∈ D, Bh ⊆ Ω×Ω is a belief relation that satisfies the following
properties:

1. Bh(ω) , ∅ if and only if h ≺ ζ(ω) [beliefs are specified only at reached
decision histories and are consistent].22

2. If ω′ ∈ Bh(ω) then h′ ≺ ζ(ω′) for some h′ such that h′ ≈ι(h) h [the
active player at history h correctly believes that her information set
that contains h has been reached].23

3. If ω′ ∈ Bh(ω) then (1) Bh(ω′) = Bh(ω) and (2) if h′ ≺ ζ(ω′) with
h′ ≈ι(h) h then Bh′ (ω′) = Bh(ω) [by (1), beliefs satisfy positive and
negative introspection and, by (2), beliefs are the same at any two
histories in the same information set; thus one can unambiguously
refer to a player’s beliefs at an information set].

4. If ω′ ∈ Bh(ω) and h′ ≺ ζ(ω′) with h′ ≈ι(h) h, then, for every action
a ∈ A(h), there is an ω′′ ∈ Bh(ω) such that h′a - ζ(ω′′) .

The last condition states that if, at state ω and history h reached at ω (h ≺ ζ(ω)),
player ι(h) considers it possible that the play of the game has reached history
h′, which belongs to her information set that contains h, then, for every action a
available at that information set, there is a state ω′′ that she considers possible
at h andω (ω′′ ∈ Bh(ω)) where she takes action a at history h′ (h′a - ζ(ω′′)). This
means that, for every available action, the active player at h has a belief about
what will happen if she chooses that action.24 A further ”natural” restriction on
beliefs will be discussed later (Section 4).

22Consistency means that there is no event E such that both E and ¬E are believed. It is well
known that, at state ω, beliefs are consistent if and only if B(ω) , ∅.

23Recall that h′ ≈ι(h) h (also written as h′ ∈ [h]) if and only if h and h′ belong to the same
information set of player ι(h) (thus ι(h) = ι(h′)).

24As noted above, this way of modeling beliefs is a departure from the standard approach in
the literature, where it is assumed that if, at a state, a player takes a particular action then she
knows that she takes that action. The standard approach thus requires the use of either objective or
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Figure 5 reproduces the game of Figure 1 and shows a model of it. For
every history, under each state that is considered possible (by the corresponding
player) we have recorded the action actually taken by the player at that state
and the player’s payoff (at the terminal history associated with that state).

                       State:
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 , ,ab ba bb

bbRabM bbL bbM
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Figure 5: The game of Figure 1 and a model of it.

Suppose, for example, that the actual state is γ. State γ encodes the follow-
ing.

subjective counterfactuals in order to represent a player’s beliefs about the consequences of taking
alternative actions. In our approach a player’s beliefs refer to the deliberation or pre-choice stage,
where the player considers the consequences of taking any available action, without pre-judging
her subsequent decision.
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1. As a matter of fact, Player 1 plays a, Player 2 plays b and Player 3 plays
M.

2. Player 1 (who is active at history∅) believes that if she plays a then Player
2 will also play a (this belief is erroneous since at state γ Player 2 actually
plays b, after Player 1 plays a) and thus her utility will be 2, and she
believes that if she plays b then Player 2 will play a and Player 3 will play
M and thus her utility will be 0.

3. Player 2 (who is active at information set {a, b}) correctly believes that
Player 1 played a and, furthermore, correctly believes that if he plays b
then Player 3 will play M and his utility will be 0, and believes that if he
plays a his utility will be 2.

4. Player 3 (who is active at information set {ab, ba, bb}) erroneously believes
that both Player 1 and Player 2 played b; thus, she believes that if she
plays L her utility will be 0, if she plays M her utility will be 2 and if she
plays R her utility will be 3.

On the other hand, if the actual state is β, then the actual play is aa and the
beliefs of Players 1 and 2 are as detailed above (points 2 and 3, respectively),
while no beliefs are specified for Player 3, because Player 3 does not get to play
(her information set is not reached).

3.4 Rationality

Consider again the model of Figure 5 and state γ. There Player 1 believes that
if she takes action a then her utility will be 2 and if she takes action b then her
utility will be 0. Thus, if she is rational, she must take action a. Indeed, at state γ
she does take action a and thus she is rational (although she will later discover
that her belief was erroneous and her utility turns out to be 0). Since Player 1
has the same beliefs at every state, we declare Player 1 to be rational at precisely
those states where she takes action a, namely β and γ. Similar reasoning leads
us to conclude that Player 2 is rational at those states where she takes action
a, namely states α and β. Similarly, Player 3 is rational at state θ only. If we
denote by R the event that all the active players are rational, then in the model
of Figure 5 we have that R = {β} (note that at state β Player 3 is not active).

We need to define the notion of rationality more precisely. Various def-
initions of rationality have been suggested in the context of extensive-form
games, most notably material rationality and substantive rationality (Aumann
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(1995; 1998)). The former notion is weaker in that a player can be found to
be irrational only at decision histories of hers that are actually reached. The
latter notion, on the other hand, is more stringent since a player can be judged
to be irrational at a decision history h of hers even if it is not reached. Given
that we have adopted a purely behavioral approach, the natural notion for us
is material rationality. We will adopt a very weak version of it, according to
which at a state ω and reached history h (that is, h ≺ ζ(ω)), the active player at
h is rational if the following is the case: if a is the action that the player takes at
h at state ω (that is, ha - ζ(ω)) then there is no other action at h that, according
to her beliefs, guarantees a higher utility.

Definition 3.2. Letωbe a state, h a decision history that is reached atω (h ≺ ζ(ω))
and a, b ∈ A(h) two actions available at h.

(A) We say that, at ω and h, the active player ι(h) believes that b is better than a
if, for all ω1, ω2 ∈ Bh(ω) and for every h′ such that h′ ≈ι(h) h (that is, history h′

belongs to the same information set as h), if h′a - ζ(ω1) (that is, a is the action
taken at history h′ at state ω1) and h′b - ζ(ω2) (that is, b is the action taken at
h′, at state ω2) then uι(h)(ζ(ω1)) < uι(h)(ζ(ω2)). In other words, the active player
at h believes that b is better than a if, restricting attention to the states that she
considers possible, the maximum utility that she obtains if she plays a is less than
the minimum utility that she obtains if she plays b.

(B) We say that player ι(h) is rational at history h at state ω if and only if the
following is true: if ha - ζ(ω) (that is, a ∈ A(h) is the action played at h at state
ω) then, for every b ∈ A(h), it is not the case that, at state ω and history h, player
ι(h) believes that b is better than a.

Finally, we define the event that all the active players are rational, denoted
by R as follows:

ω ∈ R if and only if, for every h ≺ ζ(ω),
player ι(h) is rational at h (at state ω). (2)

For example, as noted above, in the model of Figure 5 we have that R = {β}.

3.5 Correct beliefs

The notion of locally correct belief was introduced in Section 3.2 and was
identified with local reflexivity (that is, reflexivity at a state, rather than global
reflexivity). Since, at any state, only the beliefs of the active players are specified,
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we define the event that players have correct beliefs by restricting attention to
those players who actually move. Thus the event that the active players have
correct beliefs, denoted by T, is defined as follows:

ω ∈ T if and only if ω ∈ Bh(ω) for every h such that h ≺ ζ(ω). (3)

For example, in the model of Figure 5, T = {β}.
What does the expression “correct beliefs” mean? Consider state β in the

model of Figure 5 where the active players (Players 1 and 2) have correct beliefs
in the sense of (3) (β ∈ B∅(β) and β ∈ Ba(β)). Consider Player 1. There are two
components to Player 1’s beliefs: (i) she believes that if she plays a then Player
2 will also play a, (ii) she believes that if she plays b then Players 2 and 3 will
play a and M, respectively. The first belief is correct at state β, where Player 1
plays a and Player 2 indeed follows with a. As for the second belief, whether
it is correct or not depends on how we interpret it. If we interpret it as the
material conditional “if b then (a,M)” (which is equivalent to “either not b or
(a,M)”) then it is indeed true at state β, but trivially so, because the antecedent
is false there (Player 1 does not play b). If we interpret it as a counterfactual
conditional “if Player 1 were to play b then Players 2 and 3 would play a and M,
respectively” then in order to decide whether the conditional is true or not one
would need to enrich the model by adding a “similarity” or “closeness” relation
on the set of states (in the spirit of Stalnaker (1968), Lewis (1973)); one would
then check if at the closest state(s) to β at which Player 1 plays b it is indeed the
case that Players 2 and 3 play a and M, respectively. Note that there is no a priori
reason to think that the closest state to β is α. This is because, as pointed out
by Stalnaker (Stalnaker 1998, p.48), there is no necessary connection between
counterfactuals, which capture causal relations, and beliefs: for example, I can
believe that, if I drop the vase that I am holding in my hands, it will break
(because I believe it is made of glass) but in fact, if I were to drop it, it would
not break (because it is actually made of plastic).

Our models do not have the resources to answer the question: ”at state β, is
it true – as Player 1 believes – that if Player 1 were to play b then Players 2 and
3 would play a and M, respectively?” One could, of course, enrich the models,
but is there a compelling reason to do so? In other words, is it important to
be able to answer such questions? If we are merely interested in determining
what rational players do, then what matters is what actions they actually take
and what they believe when they act, whether or not those beliefs are correct
in a stronger sense than is captured by the material conditional.

Is the material conditional interpretation of ”if I play a then the outcome
will be x” sufficient, though? Since the crucial assumption in the proposed
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framework is that the agent considers all of her available actions as possible
(that is, for every available action there is a doxastically accessible state where
she takes that action), material conditionals are indeed sufficient: the material
conditional “if I take action a the outcome will be x” zooms in – through the
lens of the agent’s beliefs – on those states where action a is indeed taken and
verifies that at those states the outcome is indeed x, while the worlds where
action a is not taken are not relevant for the truth of the conditional.25

3.6 Self-confirming play

We have defined two events: the event R that all the active players are rational
and the event T that all the active players have locally correct beliefs. In the
model of Figure 5 we have that R∩ T = {β} and it so happens that ζ(β) = aa is a
Nash equilibrium play, that is, there is a pure-strategy Nash equilibrium whose
associated play is aa (in fact, there are two: (a, a,M) and (a, a,R)). However, as
shown below, this is not always the case.

At a play associated with a stateω ∈ R∩T, each active player’s chosen action
is rationally justified by her beliefs at the time of choice (since ω ∈ R) and the
beliefs concerning what would happen after that action turn out to be correct
(since ω ∈ T), so that no player is faced with evidence that her beliefs were
wrong. Does that mean that, once the final outcome ζ(ω) is revealed, no player
regrets her actual choice? The answer is negative, because it is possible that a
player, while not having any false beliefs, might not anticipate with precision
the actions of the players who move after her. In the model shown in Figure
6 we have that R ∩ T = {α, β, γ}, that is, at every state the active players are
rational and have correct beliefs. Consider state β, where the play is ad. At
state β Player 1 is rational because she believes that if she plays b her utility
will be 1 and if she plays a her utility might be 0 but might also be 2 (she is
uncertain about what Player 2 will do). Thus she does not believe that action b
is better than a and hence it is rational for her to play a (Definition 3.2). Player
2 is rational because she is indifferent between her two actions. However, ex
post, when Player 1 learns that the actual outcome is ad, she regrets not taking
action b instead of a. This example shows that even though β ∈ R∩T, ζ(β) = ad
is not a Nash equilibrium play.

Next we introduce another event which, in conjunction with T, guarantees
that the active players’ beliefs about the opponents’ actual moves are exactly

25For a more in-depth discussion see Bonanno (2021).
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Figure 6: A perfect-information game and a model of it.

correct.26 Event C (’C’ for ’certainty’) defined below rules out uncertainty about
the opponents’ past choices (Point 1) as well as uncertainty about the oppo-
nents’ future choices (Point 2). Note that Point 1 is automatically satisfied in
games with perfect information and thus imposes restrictions on beliefs only
in imperfect-information games.

Definition 3.3. A state ω belongs to event C if and only if, for every reached
history at ω (that is, for every h ≺ ζ(ω)), and ∀ω′, ω′′ ∈ Bh(ω), ∀h′, h′′ ∈ [h]
(recall that [h] is the information set that contains h),

1. if h′ ≺ ζ(ω′) and h′′ ≺ ζ(ω′′) then h′ = h′′,

2. ∀a ∈ A(h), if h′a ≺ ζ(ω′) and h′′a ≺ ζ(ω′′) then ζ(ω′) = ζ(ω′′).

26 Note that a requirement built in the definition of a self-fulfilling equilibrium (Fudenberg and
Levine 1993, p.523) is that “each player’s beliefs about the opponents’ play are exactly correct”.
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Note that – concerning Point 1 – a player may be erroneous in her certainty
about the opponents’ past choices (that is, it may be that ω ∈ C, the actual
reached history is h ≺ ζ(ω) and yet player ι(h) is certain that she is moving at
history h′ ∈ [h] with h′ , h)27 and – concerning Point 2 – a player may also be
erroneous in her certainty about what will happen after her choice.28

In the model of Figure 5 C = Ω, while in the model of Figure 6 C = ∅, because
at history ∅ Player 1 is uncertain about what will happen if she takes action a.

If state ω belongs to the intersection of events C and T then, at state ω, each
active player’s beliefs about the opponents’ actual play are exactly correct. Note,
however, that – as noted in Section 3.5 – there is no way of telling whether or
not a player is also correct about what would happen after her counterfactual
choices, because the models that we are considering are not rich enough to
address the issue of counterfactuals.

Definition 3.4. Let G be a game and z a play (or terminal history) in G. We say
that z is a self-confirming play if there exists a model of G and a state ω in that
model such that (1) ω ∈ R ∩ T ∩ C and (2) z = ζ(ω).

Definition 3.5. Given a game G and a play z in G, call z a Nash play if there is a
pure-strategy Nash equilibrium whose induced play is z.

It turns out that, in perfect-information games in which no player moves
more than once along any play, the two notions of self-confirming play and
Nash play are equivalent.29

Proposition 1 (Bonanno (2018)). Consider a perfect-information game G where no
player moves more than once along any play. Then,

(A) if terminal history z is a Nash play of G then there is a model of G and a state
ω in that model such that (1) ω ∈ R ∩ T ∩ C and (2) ζ(ω) = z,

(B) for any model of G and for every state ω in that model, if ω ∈ R ∩ T ∩ C
then ζ(ω) is a Nash play.

27For example, in the model of Figure 5, at state γ (which belongs to event C) and reached history
ab, Player 3 is certain that she is moving at history bb while, as a matter of fact, she is moving at
history ab.

28For example, in the model of Figure 5, at state γ and history ∅, Player 1 is certain that if she
takes action a then Player 2 will also play a, but she is wrong about this, because, as a matter of fact,
at state γ Player 2 follows with b rather than a.

29Note that every finite perfect-information game has at least one pure-strategy Nash equilibrium.
Note also that, unlike most of the literature, we do not restrict attention to games with no relevant
ties or generic payoffs.
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For games with imperfect information, while it is still true that a Nash
play is a self-confirming play, there may be self-confirming plays that are not
Nash plays. That is, while Part (A) of Proposition 1 is true also for imperfect-
information games, Part (B) is not. The reason for this is that two players might
have different beliefs about the potential choice of a third player. Figure 7
reproduces the game of Figure 2 together with a model of it. In the model of
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Figure 7: The game of Figure 2 and a model of it.

Figure 7, R = T = {η} and C = Ω, so that R ∩ T ∩ C = {η}. Thus at state η the
active players (Players 1 and 2) are rational, have correct beliefs and have no
uncertainty and yet ζ(η) = aA which is not a Nash play. Players 1 and 2 have
different beliefs about what Player 3 would do at her information set: at state
η Player 1 believes that if she plays d then Player 3 will play L, while Player 2
believes that if she plays D then Player 3 will play R. In the next section we
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introduce a new event, denoted by A (‘A’ stands for ‘agreement’), that rules out
such disagreement.

4 Nash play

In this section we provide a doxastic characterization of Nash play in general
games (with possibly imperfect information). First we need to add one more
condition to the definition of a model of a game that is relevant only if the game
has imperfect information.

The definition of model given in Section 3.3 (Definition 3.1) allows for
“causally flawed” beliefs. For example, consider a game where Player 1 moves
first, choosing between a and b, and Player 2 moves second and chooses be-
tween c and d without being informed of Player 1’s choice (that is, histories a and b
belong to the same information set of Player 2). Definition 3.1 allows Player 1
to have the following beliefs: “if I play a, then Player 2 will play c, while if I play
b then Player 2 will play d”. Such beliefs can be considered “irrational” on the
grounds that there cannot be a causal link between Player 1’s move and Player
2’s choice, since Player 2 does not get to observe Player 1’s move.30 Thus a
“causally correct” belief for Player 1 would require that the predicted choice(s)
of Player 2 be the same, no matter what action Player 1 herself chooses.

Definition 4.1. A causally restricted model of a game is a model (Definition
3.1) that satisfies the following additional restriction (a verbal interpretation
follows).31

5. Letω be a state, h a decision history reached atω (h ≺ ζ(ω)) and a and b two
actions available at h (a, b ∈ A(h)). Let h1 and h2 be two decision histories
that belong to the same information set of player j = ι(h1) (h1 ≈ j h2) and
c1, c2 be two actions available at h1 (c1, c2 ∈ A(h1) = A(h2)). Then the
following holds (recall that [h] denotes the information set that contains
decision history h, that is, h′ ∈ [h] if and only if h′ ≈ι(h) h):

if h′, h′′ ∈ [h], ω1, ω2 ∈ Bh(ω), h′a ≺ h1c1 - ζ(ω1) and
h′′b ≺ h2c2 - ζ(ω2), then either c1 = c2 or there exist
ω′1, ω

′

2 ∈ Bh(ω) such that h′a ≺ h1c2 - ζ(ω′1) and
h′′b ≺ h2c1 - ζ(ω′2).

(4)

30Several authors, however, have argued that such beliefs are not necessarily irrational: see, for
example, Nozick (1969), Gauthier (1986), Bicchieri and Green (1999), Spohn (2003; 2007; 2010).

31Note that, for games with perfect information, there is no difference between a model and a
restricted model, since (4) is vacuously satisfied.
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In words: if, at stateω and reached history h, player i = ι(h) considers it possible
that, if she takes action a, history h1 is reached and player j = ι(h1) takes action
c1 at h1 and player i also considers it possible that, if she takes action b, then
history h2 is reached, which belongs to the same information set as h1, and
player j takes action c2 at h2, then either c1 = c2 or at stateω and history h player
i must also consider it possible that (1) after taking action a, h1 is reached and
player j takes action c2 at h1 and (2) after taking action b, h2 is reached and
player j takes action c1 at h2.

Figure 8 shows a game and four partial models of it, giving only the beliefs
of Player 1 (at history ∅): two of them violate Condition 5 of Definition 4.1 (the
ones on the left that are labeled “not allowed”), while the other two satisfy it.
Note that the models shown in Figures 5-7 are causally restricted models.

c
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1

3

2

d

b

Allowed (at the root):

  

Not allowed (at the root):

e e ff

ac         adf       be         bf ac         adf       be         bf         ade

Figure 8: A game and four partial models of it (showing only the beliefs of
Player 1 at history ∅), two of which violate Condition 5 of Definition 4.1 and
the remaining two do not.

Now we turn to the notion of agreement, which is intended to rule out



24 Rational play

situations like the one shown in Figure 7 where Players 1 and 2 disagree about
what action Player 3 would take at her information set {d, aD}.

Definition 4.2. We say that at state ω active players i and j consider future
information set [h] of player k = ι(h) if there exist

1. two decision histories h1 and h2 that are reached at ω (that is, h1 ≺ h2 ≺

ζ(ω)) and belong to i and j, respectively (that is, i = ι(h1) and j = ι(h2)),

2. states ω1 ∈ Bh1 (ω) and ω2 ∈ Bh2 (ω),

3. decision histories h′, h′′ ∈ [h],

such that, for some h′1 ≈i h1, h′1 ≺ h′ ≺ ζ(ω1) and, for some h′2 ≈ j h2, h′2 ≺ h′′ ≺
ζ(ω2).

That is, player i at h1 considers it possible that the play has reached history
h′1 ∈ [h1] and, after taking an action at h′1, information set [h] of player k is
reached, and player j at h2 considers it possible that the play has reached
history h′2 ∈ [h2] and, after taking an action at h′2, that same information set [h]
of player k is reached.

Definition 4.3. We say that at stateω active players i and j are in agreement if, for
every future information set [h] that they consider (Definition 4.2), they predict
the same choices(s) of player k = ι(h) at h, that is, if player i is active at reached
history h1 and player j is active at reached history h2, with h1 ≺ h2 ≺ ζ(ω), then

1. if ω1 ∈ Bh1 (ω) and h′1 ≺ h′a - ζ(ω1) with h′1 ∈ [h1], h′ ∈ [h] and a ∈ A(h),
then there exists an ω2 ∈ Bh2 (ω) such that, for some h′′ ∈ [h] and h′2 ∈ [h2],
h′2 ≺ h′′a - ζ(ω2), and

2. if ω2 ∈ Bh2 (ω) with h′2 ≺ h′′b - ζ(ω2) with h′2 ∈ [h2], h′′ ∈ [h] and b ∈ A(h)
then here exists an ω1 ∈ Bh1 (ω) such that, for some h′ ∈ [h] and h′1 ∈ [h1],
h′1 ≺ h′b - ζ(ω1).

Finally we define the event, denoted by A, that any two active players are in
agreement:

ω ∈ A if and only if any two players active at ω are in agreement at ω. (5)

Proposition 2. Consider a finite extensive-form game G where no player moves more
than once along any play. Then,
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(A) If z is a Nash play of G then there is a causally restricted model of G and a
state ω in that model such that (1) ζ(ω) = z and (2) ω ∈ R ∩ T ∩ C ∩A.

(B) For any causally restricted model of G and for every state ω in that model,
if ω ∈ R ∩ T ∩ C ∩A then ζ(ω) is a Nash play.

The proof of Proposition 2 is given in the Appendix.

Remark 2. Note that, in a perfect-information game, T ∩ C ⊆ A. Hence Proposition
1 is a corollary of Proposition 2.

5 Conclusion

The characterization of Nash play given in Proposition 2, unlike characteriza-
tions of Nash equilibrium provided for strategic-form games, does not require
players to believe in each other’s rationality.32 This can be seen in the game and
model shown in Figure 9, where R = {γ}, T = {β, γ} and C = A = {α, β, γ}, so that
R ∩ T ∩ C ∩A = {γ} but at γ Player 1 does not believe that Player 2 is rational,
because β ∈ B∅(γ) and at β Player 2 is not rational (she plays d believing that c
gives her higher utility).

In the previous section we focused on the conditions that are needed to
ensure that rational play in an extensive-form game coincides with Nash play.
As noted above, these conditions do not require players to believe in each

32In their seminal paper Aumann and Brandenburger (1995) showed that, in games with more
than two players, if there exists a common prior then mutual belief in rationality and payoffs as
well as common belief in each player’s conjecture about the opponents’ strategies imply Nash
equilibrium. However, Polak (1999) later showed that, in complete-information games, Aumann
and Brandenburger’s conditions actually imply common belief in rationality. Barelli (2009) gen-
eralized Aumann and Brandenburger’s result by substituting the common prior assumption with
the weaker property of action-consistency, and by replacing common belief in conjectures with a
weaker condition stating that conjectures are constant in the support of the action-consistent distri-
bution. He thus provided sufficient epistemic conditions for Nash equilibrium without requiring
common belief in rationality. Later, Bach and Tsakas (2014) obtained a further generalization by
introducing even weaker epistemic conditions for Nash equilibrium than those in Barelli (2009):
their characterization of Nash equilibrium is based on introducing pairwise epistemic conditions
imposed only on some pairs of players (contrary to the characterizations in Aumann and Branden-
burger (1995) and Barelli (2009), which correspond to pairwise epistemic conditions imposed on all
pairs of players). Not only do these conditions not imply common belief in rationality but they do
not even imply “global” mutual belief in rationality; however the sufficient conditions provided
by Bach and Tsakas (2014) still require pairwise mutual belief in rationality. Perea (2007) provides
a one-person characterization of Nash strategies. For the case of perfect-information games, a
comparison between the characterization of Nash play given in Proposition 1 and previous results
in the literature is provided in (Bonanno 2018, Section 6).
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Figure 9: γ ∈ R ∩ T ∩ C ∩ A but at γ Player 1 does not believe that Player 2 is
rational.

other’s rationality. Hence they are too weak to yield stronger solution con-
cepts, such as backward induction. Within the behavioral approach described
in this paper, the conditions needed to obtain a characterization of backward
induction in perfect information games, or a generalized version of it for games
with imperfect-information, are investigated in Bonanno (2018) and Bonanno
(2014), respectively. These conditions, which can be expressed as events, cap-
ture iterated belief in the rationality of future players, in the following sense:
each active player is rational and believes that, after any of her actions, the
players who will follow will be rational and will believe that, after any of their
actions, the players who will follow will be rational, and so on. This is what
Perea (2014) calls “belief in the opponents’ future rationality” (a notion that he
develops in the approach commonly used in the literature, where the under-
lying space of uncertainty is the set of the opponents’ strategies) and Bonanno
(2014) calls “forward belief in rationality” (developed within a dynamic behav-
ioral approach, with a focus on von Neumann games, that is, games where any
two histories that belong to the same information set have the same number of
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predecessors).
In Definition 3.4 we put forward the notion of self-confirming play, which is

in the spirit of self-confirming equilibrium (Fudenberg and Levine (1993)), but
framed in behavioral terms and without making use of the notion of strategy.
We showed that in perfect-information games the notion of self-confirming
play is equivalent to the notion of Nash play, but the equivalence does not
extend to imperfect information games. Proposition 2 identified the additional
restrictions that are needed to characterize the set of Nash plays in games with
imperfect information.

A Proof of Proposition 2

Given a finite extensive-form game and a pure-strategy profile s, define the
function fs : H → Z (recall that H is the set of all histories and Z is the set of
terminal histories) as follows: if z ∈ Z then fs(z) = z and if h ∈ D (recall that D is
the set of decision histories) then fs(h) is the terminal history reached from h by
following the choices prescribed by s. We denote by z∗s the play generated by s,
that is, the terminal history reached by s from the null history: z∗s = fs(∅). We
say that z∗s avoids information set [h] if, for all h′ ∈ [h], h′ ⊀ z∗s. If z∗s does not avoid
information set [h] then we denote the unique history in [h] that is a prefix of z∗s
by h∗s([h]) (thus h∗s([h]) ∈ [h] and h∗s([h]) ≺ z∗s).

Definition A.1. Given an extensive-form game G, denote by I the set of in-
formation sets. Let s be a pure-strategy profile of G. A selection function based
on s is a function gs : I → D that selects for every information set [h] ∈ I a
unique decision history in [h] subject to the constraint that if z∗s does not avoid
information set [h] then gs([h]) = h∗s([h]).

Definition A.2. Let G be an extensive-form game, s a pure strategy profile and
gs a selection function based on s. The model of G generated by s and gs is the
following model.

• Ω = Z.

• ζ : Z→ Z is the identity function: ζ(z) = z,∀z ∈ Z.

• For every h ∈ D and z ∈ Z define Bh(z) as follows:

1. If h ⊀ z, then Bh(z) = ∅.
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2. If h ≺ z∗s then Bh(z∗s) =
{
z′ ∈ Z : z′ = fs(ha) for some a ∈ A(h)

}
. [That

is, if h is on the play generated by s, then at h the active player
believes that, for every available action a, if she takes action a then
the outcome will be the terminal history reached from ha by s.]

3. If h ⊀ z∗s, but [h] is not avoided by z∗s, then, for all z ∈ Z such that h ≺ z,
Bh(z) =

{
z′ ∈ Z : z′ = fs(h∗s([h])a) for some a ∈ A(h)

}
.[That is, at every

decision history in an information set crossed by the play generated
by s, the player believes that the play has reached history h∗s([h]) (the
history in [h] that is on the play to z∗s) and her beliefs are as given in
Point 2.]

4. If [h] is avoided by z∗s, let ĥ = gs([h]). Then, for every h′ ∈ [h] and every
z ∈ Z such that h′ ≺ z, Bh′ (z) = {z′ ∈ Z : z′ = fs(ĥa) for some a ∈ A(h)}.
[That is, at every decision history in an information set that is not
crossed by the play generated by s, the player believes that she is at
the history selected by gs, denoted by ĥ, and that, for every available
action a, if she takes action a then the outcome will be the terminal
history reached from ĥa by s.]

Remark 3. Note that the model generated by a pure-strategy profile s and a selection
function gs is a causally restricted model (Definition 4.1).

Remark 4. Let G be a finite extensive-form game and consider the model generated
by a pure-strategy profile s of G and a selection function gs (Definition A.2). Then the
no-uncertainty conditions 1 and 2 of Definition 3.3 and the agreement condition (5)
are satisfied at every state, that is, C = A = Z. Furthermore, by Point 1 in Definition
A.2, z∗s ∈ Bh(z∗s) for all h such that h ≺ z∗s; that is, z∗s ∈ T.

We can now prove Proposition 2.

Proof. (A)33 Fix a finite extensive-form game G and let s be a pure-strategy
Nash equilibrium s of G. Fix a selection function gs based on s (Definition A.1)
and consider the model generated by s and gs (Definition A.2). By Remark 4,
z∗s ∈ C∩T∩A (recall that z∗s is the play generated by s, that is, z∗s = fs(∅)). Thus
it only remains to show that z∗s ∈ R. If h is a decision history, denote by s(h) the
choice selected by s at h. Fix an arbitrary decision history h that is reached at
state h ≺ z∗s (that is, h ≺ z∗s) and let a be the action at h such that ha - z∗s, that
is, s(h) = a; then fs(ha) = fs(∅) = z∗s. Suppose that player ι(h) is not rational

33For this part of the proof we do not need the restriction that no player moves more than once
along any play of the game.



G Bonanno 29

at h. Then there is an action b ∈ A(h) \ {a} that guarantees a higher utility to
player ι(h), that is, if z′ ∈ Bh(z∗s) is such that hb - z′, then uι(h)(z′) > uι(h)(z∗s).
By Definition A.2, z′ = fs(hb) and thus uι(h)( fs(hb)) > uι(h)( fs(ha)) so that by
unilaterally changing her strategy at h from a to b (and leaving the rest of
her strategy unchanged), player ι(h) can increase her payoff, contradicting the
assumption that s is a Nash equilibrium.

(B) Let G be a finite extensive-form game where no player moves more than
once along any play and consider a model of it where there is a state α such
that α ∈ R∩T∩C∩A. We need to construct a pure-strategy Nash equilibrium
s of G such that fs(∅) = ζ(α).

STEP 1. For every decision history h such that h ≺ ζ(α), let s(h) = a where
a ∈ A(h) is the action at h such that ha - ζ(α).

STEP 2. Fix an arbitrary decision history h that is reached at state α (that is,
h ≺ ζ(α)) and an arbitrary b ∈ A(h) such that hb � ζ(α) (that is, b , s(h) where
s(h) was defined in Step 1). By Definition of model (Definition 3.1) there exists
an ω̂ ∈ Bh(α) such that ĥb - ζ(ω̂) for some ĥ ∈ [h]. Since α ∈ C, by Point 1 of
Definition 3.3 for every ω′ ∈ Bh(α) and for every h′ ∈ [h], if h′b - ζ(ω′) then
h′ = ĥ. Since α ∈ C, by Point 2 of Definition 3.3 for any other ω ∈ Bh(α) such
that ĥb - ζ(ω), ζ(ω) = ζ(ω̂). Define, for every h′ such that ĥb - h′ ≺ ζ(ω̂),
s(h′) = c where c ∈ A(h′) is the action at h′ such that h′c - ζ(ω̂). Note that, since
α ∈ A, if any other active player at any reached history at state α considers the
information set that contains history h′, then that player will also predict choice
c at h′. Thus s(h′) is well defined.
So far we have defined the choices prescribed by s along the play ζ(α) and for
paths to terminal histories following one-step deviations from this play.

STEP 3. Complete s in an arbitrary way.

Because of Step 1, ζ(α) = fs(h), for every h - ζ(α) (in particular, fs(∅) = ζ(α)).
We want to show that s is a Nash equilibrium. Suppose not. Then there is a
decision history h with h ≺ ζ(α) such that, by changing her choice at h from s(h)
to a different choice, player ι(h) can increase her payoff (recall the assumption
that the game satisfies the no-consecutive-moves assumption and thus there
are no successors of h that belong to player ι(h)). Let s(h) = a (thus ha - ζ(α))
and let b be the choice at h that yields a higher payoff to player ι(h); that is,

uι(h)( fs(hb)) > uι(h)(ζ(α)). (6)

Let ω ∈ Bh(α) be such that hb - ζ(ω) (such an ω exists by Point 4 of Definition
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3.1). Since α ∈ C, for every ω′ ∈ Bh(α) such that hb - ζ(ω′), ζ(ω) = ζ(ω′). By
Step 2 above,

ζ(ω) = fs(hb). (7)

It follows from (7) that, at state α and history h, player ι(h) believes that if she
plays b her payoff will be uι(h)( fs(hb)). Since α ∈ T, α ∈ Bh(α), and since α ∈ C,
for every ω′ ∈ Bh(α) such that ha - ζ(ω′), ζ(ω′) = ζ(α). Thus, at state α and
history h, player ι(h) believes that if she plays a her payoff will be uι(h)(ζ(α)). It
follows from this and (6) that at α and h player ι(h) believes that action b is better
than action a, which implies that at α player ι(h) is not rational, contradicting
the assumption that at α ∈ R. �
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