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Abstract
We consider decision problems under complete ignorance and extend the
minimax regret principle to situations where, after taking an action, the de-
cision maker does not necessarily learn the state of the world. For example,
if the decision maker only learns what the outcome is, then all she knows
is that the actual state is one of the possibly several states that yield the
observed outcome under the chosen action. We refer to this situation as
imperfect ex-post information. We also extend the framework to encompass
the possibility of less than the extreme pessimism that characterizes the
minimax regret criterion.
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1 Introduction

A decision problem is typically framed in terms of three entities: (1) the avail-
able actions (also called acts), (2) the external facts over which the decision
maker (henceforth, DM) has no control, usually referred to as states, and (3)
the possible outcomes or consequences, over which the DM has well-defined
preferences. An action is construed as a list of outcomes, one for each state.
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The decision problem can then be represented as a matrix, as shown in Table
1 where the rows are labeled with actions and the columns with states and the
entries in the matrix are the possible outcomes: in the example of Table 1 the
outcomes are taken to be sums of money (changes in the DM’s wealth).

state
s1 s2 s3

a1 $10 $10 $2
action a2 $1 $30 $1

a3 $4 $18 $7

Table 1: A decision problem with monetary outcomes.

We will focus on decision criteria that are based on the notion of regret
aversion, which rests on two assumptions.

The first assumption is that, once an action has been chosen and its conse-
quences have been learned, the DM feels regret if an alternative action would
have led to a better outcome. For example, if – in the decision problem rep-
resented in Table 1 – the DM chooses action a1 and later learns that the state
is s2 then she experiences regret (assuming, of course, that she prefers more
money to less), because she could have obtained an additional $20 if she had
chosen action a2 instead of a1. Thus, ex-post the DM experiences regret if she
knows that she could have done better. Most of the literature on regret implicitly
assumes that, after taking an action, the DM learns what the state is. This paper
deals with the case where the ex-post knowledge acquired by the DM might be
imperfect. For example, the DM might simply learn what the outcome is and
not necessarily what the state is. If the observed outcome after taking action a
is associated with several states, then all the DM learns is that the actual state is
one of those states. For example, in the decision problem represented in Table
1, if the DM chooses action a1 and receives $10 then she learns that the state is
either s1 or s2 and thus it is not the case that she knows that she could have done
better with a different action: as far as she knows, the state could be s1, in which
case action a1 is in fact the optimal action. On the other hand, if the DM takes
action a2 and receives $1 then she learns that the state is either s1 or s3 and she
knows that she would have done better with either a1 or a3. There is a sizeable
empirical literature that discusses this issue, referred to as the ”feedback” issue.



G Bonanno 3

This literature is discussed in Section 2.
The second assumption on which the notion of regret aversion rests is that

ex ante (that is, at the time of making a decision) the DM anticipates the ex post
feelings of regret and chooses that action that best protects her from regret.
While the first assumption has to do with the presence or absence of regret,
the second assumption requires measuring the amount of regret experienced.
This is done by postulating a von Neumann-Morgenstern utility function over
the set of outcomes and constructing a ”regret matrix” where the entry in the
row corresponding to action a and state s is given as the difference between
the largest utility that could have been achieved in state s (by possibly taking a
different action) and the utility actually achieved. For example, in the situation
represented in Table 1, if we assume that the DM’s von Neumann-Morgenstern
utility function is the identity function: U($x) = x, then the regret matrix is as
shown in Table 2.

state
s1 s2 s3

a1 0 20 5
action a2 9 0 6

a3 6 12 0

Table 2: The regret matrix corresponding to Table 1 when the utility function is
U($x) = x.

The most commonly used decision rule is minimax regret, introduced by
Savage (1951) and later axiomatized by Milnor (1954), Puppe and Schlag (2009),
Stoye (2011). The rule is based on the assumption that the DM is unable to assign
probabilities to the states, a situation usually referred to as complete ignorance.1

According to the minimax regret principle, one first determines, for every
action, the largest possible regret and then chooses that action that minimizes
the largest regret. For example, in Table 2 the largest regrets are: 20 for action

1On the other hand, regret theory – introduced by Bell (1982), Loomes and Sugden (1982; 1987)
and axiomatized by Sugden (1993), Hayashi (2008), Diecidue and Somasundaram (2017) – takes
as given a probability measure over the set of states and constructs a binary relation on actions
based on expected regret. For general discussions of regret theory see Sugden (1985), Bleichrodt
and Wakker (2015).
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a1, 9 for a2 and 12 for a3 and thus the minimax regret criterion picks action a2.2

Of course, this criterion is based on the implicit assumption that ex post the DM
learns what the state is. The objective of this paper is to discuss how to adapt
the minimax regret rule to situations of imperfect ex-post information about the
state. This is done in Section 3, after reviewing – in Section 2 – the empirical
literature that studies the effect of imperfect information on ex ante decisions.

An assumption underlying the minimax regret criterion is that, ex ante, the
DM is extremely pessimistic about her potential ex-post regret: this is why she
focuses on the largest possible regret associated with every action. After gener-
alizing the standard minimax regret principle to the case of imperfect ex-post
information, in Section 4 we further generalize the framework by introducing a
Hurwicz index of pessimism (Hurwicz (1951)), which allows for less than extreme
pessimism. Section 5 contains further discussion and a conclusion.

2 The role of feedback

As remarked above, a critical issue in modeling regret is the extent to which the
DM, after her choice, is informed about the outcomes that would have resulted
had she chosen differently. This issue has been explored in the experimental
literature on ”feedback-conditional” regret (Larrick and Boles (1995), Ritov
(1996), Zeelemberg et al. (1996), Zeelemberg and Beattie (1997), Zeelemberg
(1999)). The general finding in this literature is that people tend to prefer
options which screen them from discovering the outcome of counterfactual
choices: the anticipated negative emotion associated with regret is reduced or
eliminated if people do not know the outcome of the forgone choice.

Larrick and Boles (1995) conducted an experiment in which a job recruit
negotiated with a recruiter over the size of a sign-up bonus. The recruits
were told that they had a single ”best alternative to a negotiation agreement”
(BATNA), for which they knew only the probability distribution over possible
values. Half the subjects were told that they would find out the specific value
of their BATNA only if they failed to reach an agreement in their current
negotiation, while the other half were told that they would discover the value
of their BATNA regardless of whether they reached an agreement. The authors
found that the first feedback scenario led recruits to be more likely to accept a
low offer: by being less ambitious, they increased the likelihood of reaching an

2Acker (1997) proposes a modification of the minimax regret rule based on taking into account,
not only the maximum, but also the minimum foregone utility associated with each action and
each state.
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agreement and thereby (because of the lack of feedback on the actual value of
the BATNA) shielded themselves from the possibility of experiencing regret.
On the other hand, in the second feedback scenario recruits tended to hold out
for a better offer, in order to avoid the possibility of learning later that they had
settled for too little (relative to the BATNA).3

Ritov (1996) ran an experiment where subjects were presented with a choice
between two independent monetary lotteries and asked which one they would
choose under different scenarios.4 The two lotteries had the same expected
value, but one of the two involved higher risk and higher gains. In one scenario
the subjects were told that only the chosen lottery would be resolved, while
in the other scenario both the chosen lottery and the foregone lottery would
be resolved and the outcome revealed. The author found that the subjects in
the second scenario (complete resolution) chose the high-risk, high-gain option
more often than the subjects who were told that only their selected lottery
would be resolved. Thus expectations concerning the extent of uncertainty
resolution played a significant role in ex-ante choices.

In a series of experiments Zeelemberg et al. (1996) demonstrated that the
anticipation of regret, caused by the manipulation of expected feedback on fore-
gone options, can promote not only risk-averse but also risk-seeking choices.
In all the experiments participants were given a choice between a risky and a
safe gamble. Participants always expected to learn the outcome of the chosen
option, but in addition they could sometimes receive feedback on the foregone
outcome. Participants who expected to receive feedback on the safe option,
regardless of their choice, were likely to choose this option. Participants who
expected to receive feedback on the risky option tended to choose the risky op-
tion. This pattern of choice was found in both high and low variance gambles,
but was more pronounced in the latter.5

The experimental literature reviewed above shares two features: (1) sub-
jects were only asked to choose between two alternatives and (2) the alternatives
were monetary lotteries with specified probabilities, so that the decision prob-
lems were not characterized by complete ignorance. Furthermore, no general

3Although we have focused on the choices of the recruits, Larrick and Boles (1995) showed that
the same behavior was exhibited by the recruiters.

4The subjects’ choices, however, were only hypothetical since they were not actually paid the
amounts of money associated with their chosen lotteries.

5Whereas most experiments focused on individual decision making, Zeelemberg and Beattie
(1997) also considered decisions made in an interpersonal context, namely the ultimatum game. An
overview of some of the empirical literature on the role of feedback in decision making is provided
in Zeelemberg (1999).
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theoretical framework was offered for modeling partial ex-post information (the
only theoretical contribution I am aware of is Humphrey (2004), which will be
discussed in Section 5). In the following section we provide such a framework.

3 A general model of partial ex-post information

What information the DM receives ex post should be part of the description of
the decision problem. This can be done by associating with every action a a
partition Πa of the set of states Σ. For every state s ∈ Σ, we denote by Πa(s)
the cell of Πa that contains state s (thus s ∈ Πa(s) and, furthermore, if s′ ∈ Πa(s)
then Πa(s′) = Πa(s)). The interpretation of Πa(s) is that, if the DM takes action
a and the actual state is s, then all the DM learns is that the actual state is
one of the states in Πa(s). A natural example of this is the case where, after
taking action a, the DM ex post only learns what the outcome is and thus cannot
distinguish between any two states that yield that outcome. For example, in
the decision problem shown in Table 3 (which reproduces Table 1 with the
addition of a column labeled ”feedback”), if the DM only learns how much
money she receives, then the partition associated with each action is shown in
the last column.

state
s1 s2 s3 feedback

a1 $10 $10 $2 {{s1, s2}, {s3}}

action a2 $1 $30 $1 {{s1, s3}, {s2}}

a3 $4 $18 $7 {{s1}, {s2}, {s3}}

Table 3: The decision problem of Table 1 when the DM learns only the outcome
of her choice and not necessarily the state.

There are many situations where one only learns the outcome of the choice
made, but not what would have been the outcome of an alternative choice: a
researched who submits a paper to a journal, and is notified of its acceptance,
does not know whether the paper would have been accepted or rejected if she
had submitted it to a more prestigious journal; a consumer who purchases an
experience good is able to determine, through repeated use, how satisfied she
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is with it, but learns nothing about how it compares to a competitive good; an
employer who hires a new recruit learns how competent and reliable the new
hire is, but does not know whether an alternative applicant would have been
better or worse, etc.

The case where ex post the DM always learns the state is a special case of
this general framework: it corresponds to the situation where the partition
associated with each action is the same, namely the finest partition (whose
elements are singleton sets); we shall call this the case of perfect information.
The expression imperfect information will be used to refer to the remaining cases
where, for at least some action a, there is at least one element of Πa that is not a
singleton.

Consider the decision problem of Table 3 (with the feedback postulated in
the last column) and suppose that the DM selects action a1 and receives $10.
Will she experience regret? She does not know if the state is s1, in which
case action a1 was indeed the optimal action, or s2, in which case she would
have received more money with an alternative action. Hence she considers
it possible that she could have done worse and she also considers it possible
that she could have done better. The important point is that she does not know
that she could have done better and thus – we postulate – cannot experience
regret. We state this as an assumption. First a definition. For every action a
and state s we denote by a(s) ∈ X the outcome that a yields in state s (X is the
set of outcomes); furthermore, if x, y ∈ X we write x % y to denote that the DM
considers outcome x to be at least as good as outcome y and x � y to denote that
the DM considers x to be better than y (as is standard, we assume that the DM
has a complete and transitive preference relation over the set of outcomes).6

Definition 3.1. Let Σ be the set of states, S ⊆ Σ a set of states, and a and b two
actions. We say that b dominates a relative to S if (1) b(s) % a(s), for all s ∈ S, and
(2) for at least one s′ ∈ S, b(s′) � a(s′). We denote by D(a,S) ⊆ A the (possibly
empty) set of actions that dominate a relative to S (A is the set of actions).

Assumption 1. After taking action a, in order for the DM to experience regret
at state s it must be the case that she knows that she would have done better
with another action, that is, there must be an action b that dominates a relative
to Πa(s) (recall that Πa(s) is the cell of the partition Πa that contains state s).
Thus, at state s, the DM regrets choosing action a if and only if D(a,Πa(s)) , ∅.

6A binary relation %⊆ X × X is complete (or total) if, for all x, y ∈ X, either x % y or y % x (or
both); it is transitive if for all x, y, z ∈ X, if x % y and y % z then x % z. Strict preference, denoted by
x � y, is defined as x % y and y � x.
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In the example of Table 3, the DM does not experience regret at state s1 if
she takes action a1 (indeed, D(a1, {s1, s2}) = ∅), whereas she does experience
regret at state s1 if she takes action a2, since both a1 and a3 dominate a2 relative
to Πa2 (s1) = {s1, s3} (D(a2, {s1, s3}) = {a1, a3}).

The issue of when the DM experiences regret is separate from the issue of
how regret should be measured when it is in fact experienced. For this we
take the standard approach and postulate a von Neumann-Morgenstern utility
function on the set of outcomes, U : X → R. Before dealing with the general
case, let us consider the example of Table 3 and suppose that the DM has chosen
action a2 and receives $1, thus inferring that the actual state is either s1 or s3;
hence she comes to know that she would have done better with either a1 or
a3. Which of the two alternative actions does she wish she had taken? Assume that
the DM’s utility function is the identity function: U($x) = x. If she had taken
action a1 she could have had an extra utility of 10 − 1 = 9, if the state is s1, or
an extra utility of 2 − 1 = 1, if the state is s3; if pessimistic she will assess her
regret of not taking action a1 at 9, while if optimistic she will assess her regret
of not taking action a1 at 1. In keeping with the implicit assumption of extreme
pessimism, which underlies the minimax regret principle, we will assume in
this section that the DM focuses on the largest regret associated with not taking
action a1, namely 9; in Section 4 we will consider the possibility of less than
extreme pessimism. Similarly, if she had taken action a3 she could have had an
extra utility of 3, if the state is s1, or an extra utility of 6, if the state is s3 and we
assume that the DM assesses her regret of not taking action a3 at 6, the larger of
the two values. Finally, we take the larger of the two regret values, namely 9,
as a measure of the regret experienced ex post in the state of knowledge {s1, s3}

after taking action a2.

Thus, for every action a, we can associate a regret value to each cell of Πa. For
the decision problem of Table 3, the regret values are as shown in Table 4.

Finally, according to the minimax regret rule, we pick the action that has the
lowest of the largest regrets. Thus in the case of Table 4 the chosen action is a1
(note that, in the case of perfect information, the action chosen by the minimax
regret rule is a2: see Table 2).
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{s1} {s2} {s3} {s1, s2} {s1, s3}

a1 - - - - 5 0 - -

a2 - - 0 - - - - 9
a3 6 12 0 - - - -

Table 4: The ex-post regret values for Table 3 when the utility function is U($x) =
x .

Turning to the general framework, consider the case where the DM has
chosen action a and the actual state is s. Two cases are possible:

1. D(a,Πa(s)) = ∅, that is, there is no action that dominates a relative to Πa(s).
Then it is not the case that the DM knows that she could have done better
with some other action and thus we take regret to be 0.

2. D(a,Πa(s)) = {b1, . . . , br} with r ≥ 1. Then the DM knows that she could
have done better with any of the actions bi (i = 1, . . . , r). For every
i = 1, . . . , r let R(bi|a) = max

s′∈Πa(s)
{U(bi(s′)) −U(a(s′))} be the regret of not

taking action bi (instead of a). Then we define the regret associated with
taking action a at state s as R(a,Πa(s)) = max

i∈{1,...,r}
{R(bi|a)}. 7 , 8

Finally, applying the minimax regret principle, we select that action that min-
imizes the maximum regret. More precisely, denote by Γ(a) the ex-post regret
associated with action a and define it as follows: Γ(a) = max

S∈Πa

R(a,S). Let Â ⊆ A

be the set of actions selected by the minimax regret principle; then a ∈ Â if and
only if Γ(a) ≤ Γ(a′) for all a′ ∈ A.

7Note that if s′ ∈ Πa(s) then Πa(s′) = Πa(s) and thus R(a,Πa(s′)) = R(a,Πa(s)). Thus we could
alternatively write R(a, s) instead of R(a,Πa(s)).

8Note also that if Πa(s) = {s}, that is, if ex post the DM knows that the state is s, then, by Definition
3.1, b ∈ D(a, {s}) if and only if U(b(s)) > U(a(s)) and thus Point 2 above yields the standard measure
of regret for the case of perfect information.
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4 Allowing for less than extreme pessimism

As remarked above, the minimax regret principle reflects extreme ex-ante pes-
simism on the part of the DM, in that she assesses the ex-post regret of taking
an action at its largest possible value. In this section we allow for less than ex-
treme pessimism by assuming that the DM is characterized by a Hurwicz index
of pessimism α (with 0 < α ≤ 1) (Hurwicz (1951)) so that, both ex post and ex ante,
she assesses regret as a convex combination of the largest and smallest regret
values, namely α times the largest value plus (1 − α) times the smallest value.
The standard minimax regret criterion thus corresponds to the case where α = 1
(together with perfect information).

In the case of perfect ex-post information, whenever – as is the case in the
example of Table 1 – for every action there is a state where that action is optimal,
the value of α makes no difference in terms of the selected action. Indeed, in
such a case the assessed regret value for action a will be αm + (1 − α)0 = αm,
where m is the maximum regret associated with a; hence minimizing αm leads
to the same result as minimizing m. On the other hand, even in the case under
consideration, the value of the index α does have an impact on the selected
action if there is imperfect ex-post information. For example, in the case of
Table 3, if the DM takes action a2 then she will assess the regret of not taking
action a1 as 9α + 1(1 − α) = 1 + 8α and the regret of not taking action a3 as
6α + 3(1 − α) = 3 + 3α; thus, ex post she will asses her regret for having chosen

action a2 as max{1 + 8α, 3 + 3α} =

{
3 + 3α if α ≤ 2

5

1 + 8α if α > 2
5

, so that the action that

she will select ex ante is


a2 if α < 1

2

a1 or a2 if α = 1
2

a1 if α > 1
2

.

In general, consider the case where the DM has chosen action a and the
actual state is s.

1. Ex-post regret. Let ρ(a,Πa(s)) be the DM’s ex-post regret of taking action a
knowing that the actual state belongs to the set Πa(s). Define ρ(a,Πa(s))
as follows.

(a) If D(a,Πa(s)) = ∅ (that is, there is no action that dominates a relative
to Πa(s)) then ρ(a,Πa(s)) = 0.

(b) Suppose that D(a,Πa(s)) = {b1, . . . , br} with r ≥ 1 (that is, the DM
knows that she could have done better with any of the actions
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bi, i = 1, . . . , r). Let α ∈ (0, 1] the the DM’s index of pessimism.
For every i = 1, . . . , r let R(bi|a) = α max

s′∈Πa(s)
{U(bi(s′)) −U(a(s′))} + (1 −

α) min
s′∈Πa(s)

{U(bi(s′)) −U(a(s′))} be the regret of not taking action bi (in-

stead of a). Then ρ(a,Πa(s)) = max
i∈{1,...,r}

{R(bi|a)}.

2. Ex-ante (or anticipated) regret. For every action a ∈ A, let Γ(a) be the
assessed ex-ante regret associated with action a, defined as follows: Γ(a) =
αmax

S∈Πa

{
ρ(a,S)

}
+ (1 − α) min

S∈Πa

{
ρ(a,S)

}
.

Finally, let Â ⊆ A be the set of actions selected by the generalized minimax
regret principle; then a ∈ Â if and only if Γ(a) ≤ Γ(a′), for every a′ ∈ A. For
example, consider the decision problem shown in Table 5 where the numbers
are utilities, that is, the entry in the row labeled ai and column labeled s j is
U

(
ai(s j)

)
.

state
s1 s2 s3 s4

a1 1 1 2 2
action a2 2 1 3 1

a3 0 3 1 3
a4 1 4 1 4

Table 5: A decision problem where the entries are utilities.

Let us first consider the case of perfect information. Table 6 shows the values
ρ(a, {s}).9

9These are the standard ex-post regret values, that is, ρ(a, {s}) = max
a′∈A
{U(a′(s))} −U(a(s)).
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s1 s2 s3 s4 ex-ante regret Γ

a1 1 3 1 2 Γ(a1) = 3α + (1 − α) = 1 + 2α
a2 0 3 0 3 Γ(a2) = 3α
a3 2 1 2 1 Γ(a3) = 2α + (1 − α) = 1 + α

a4 1 0 2 0 Γ(a4) = 2α

Table 6: The ex-post regret values ρ(a, {s}) for the decision problem of Table 5 in
the case of perfect information. The corresponding ex-ante regret values Γ(ai)
are shown in the last column.

Thus, in the case of perfect information, the set of actions selected by the
generalized minimax regret criterion is as follows:

Â =

{
{a4} if α < 1
{a3, a4} if α = 1 .

Next we consider the imperfect-information case shown in Table 7 where
the utilities are the same as in Table 5 and the feedback is as shown in the last
column.

state
s1 s2 s3 s4 feedback

a1 1 1 2 2 {{s1, s2}, {s3, s4}}

action a2 2 1 3 1 {{s1}, {s2, s4}, {s3}}

a3 0 3 1 3 {{s1}, {s2, s4}, {s3}}

a4 1 4 1 4 {{s1, s3}, {s2, s4}}

Table 7: The decision problem of Table 5 with the imperfect-information feed-
back shown in the last column.
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Table 8 shows the ex-post regret values ρ (a,Πa(s)) for the decision problem
of Table 7.10

{s1} {s3} {s1, s2} {s1, s3} {s2, s4} {s3, s4} ex-ante regret Γ

a1 - - - - 3α - - - - 0 Γ(a1) = 3α2

a2 0 0 - - - - 3 - - Γ(a2) = 3α
a3 2 2 - - - - 1 - - Γ(a3) = 1 + α

a4 - - - - - - 1 + α 0 - - Γ(a4) = (1 + α)α

Table 8: The ex-post regret values for Table 7 and the corresponding ex-ante
regret values Γ(ai) in the last column.

Thus the set of actions selected by the generalized minimax regret criterion is
as follows:

Â =


{a1} if 0 < α < 1

2
{a1, a4} if α = 1

2
{a4} if 1

2 < α < 1
{a3, a4} if α = 1

5 Discussion and conclusion

In Section 2 we reviewed the empirical literature that highlighted the impor-
tance, for decision making, of the feedback about the state that the DM acquires
ex post. To the best of my knowledge, the only attempt to model the feedback
effect theoretically was made by Humphrey (2004). His approach, however, is
substantially different from ours. The author adopts the framework of Loomes
and Sugden (1987) where the DM is able to assign a probability p j to each
state s j ( j = 1, . . . ,n). The outcome of taking action ai when the state is s j is
denoted by xi j. Loomes and Sugden (1987) postulate that the utility of tak-
ing action ai in state s j depends not only on the actual outcome xi j but also
on the foregone outcome xkj (from the foregone action ak, k , i) and denote
this utility by M(xi j, xkj); they then use the probabilities of the states to define

10For example, D(a1, {s1, s2}) = {a2, a4}, R(a2|a1) = α and R(a4|a1) = 3α so that ρ(a1, {s1, s2}) = 3α.
Similarly, D(a4, {s1, s3}) = {a1, a2}, R(a1|a4) = α and R(a2|a4) = 2α+(1−α) = 1+α so that ρ(a4, {s1, s3}) =
1 + α.
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a binary preference relation on the set of actions as follows: ai % ak if and

only if
n∑

j=1
M(xi j, xkj) p j ≥

n∑
j=1

M(xkj, xi j) p j. Humphrey (2004) modifies this utility

function in order to take into account the feedback that the DM receives about
the state. The author interprets Loomes and Sugden (1987)’s utility function
M(xi j, xkj) (which he denotes by m(xi j, xkj)) as the

”anticipated utility of having xi j and missing out on xkj under a
particular state of the world where the outcome of the chosen act
xi j is fully revealing of the state of the world. In this case receiving xi j
reveals that the outcome of the foregone act is xkj.” [(Humphrey
2004, p.845), emphasis in the original.]

To the function M(xi j, xkj) the author adds a second function µ(xi j, xkj) which he
interprets as the

”modified anticipated utility of having xi j and missing out on xkj,
but where having xi j will not be fully revealing of the state of the world.
In this case, the decision-maker has anticipated a state of the world
under which they will receive xi j and forego xkj, but actually re-
ceiving xi j does not reveal xkj (as opposed to some other outcome,
say, z) as the outcome of the foregone act.” [ibidem, emphasis in the
original.]

The author then imposes several restrictions on the relationship between these
two functions and shows that some of the conclusions reached in the empirical
literature can be reversed by an appropriate choice of the additional function
µ(xi j, xkj). However, the author does not offer a general theory of what it means
for an outcome ”not to be fully revealing of the state of the world”; in particular,
if – after taking action ai – outcome xi j occurs (so that the state is s j), what
restrictions are there on the alternative states to be considered? Furthermore,
he offers no explanation of how the function µ varies with alternative forms of
feedback and how such a function should be constructed or elicited.

We considered the case of complete ignorance (where the DM is not able
to assign probabilities to the states) and presented a general framework for
adapting the minimax regret principle to situations where, after taking an
action, the DM does not necessarily learn what the actual state is. For example,
if – after taking action a – the DM ex post only learns that the outcome is
x0, then she will not be able to distinguish between any two states that yield
outcome x0 under action a: the set of states that she considers possible is
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S0 = {s ∈ Σ : a(s) = x0}. We postulated that, in order to experience regret, the
DM must know that she would have done better with a specific different action,
that is, there must be an alternative action b that dominates a relative to the
set of states S0, in the sense that b(s) % a(s) (outcome b(s) is at least as good
as outcome a(s)), for every s ∈ S0, and, furthermore, for at least one s′ ∈ S0,
b(s′) � a(s′) (b(s′) is better than a(s′)). We take it that, for the DM, regretting
choosing action a corresponds to a statement of the form ”in light of what I know
now, I wish I had chosen action b instead of a”. If, according to her ex-post
knowledge, the DM thinks that the state could be s1 or could be s2, then she
cannot consistently think ”I wish that I had chosen action b1 if the state is s1
and action b2 if the state is s2”, since she cannot distinguish between s1 and
s2; in other words, the wished hypothetical alternative action cannot be a function of
contingencies that the DM cannot tell apart ex post.

Having identified a necessary and sufficient condition for the experience of
ex-post regret, we then dealt with the issue of how to measure regret. This step
involves assessing the desirability of every alternative action that qualifies (that
is, that dominates the chosen action relative to the acquire ex-post knowledge),
assigning a regret value to each such action and then picking the one with
the largest regret value. In Section 4 we further generalized the framework
by allowing for less than the extreme degree of pessimism that underlies the
minimax regret principle: we assumed that the DM is characterized by a Hur-
wicz index of pessimism α ∈ (0, 1]. The generalized minimax regret principle
reduces to the standard minimax principle when (1) there is perfect information
(that is, the DM ex post learns the state) and (2) α = 1.
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