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Abstract

This paper endogenizes the interplay between innovation by a regulated …rm and regulatory delay.

In the signaling model, the …rm times its innovation to communicate its private information about

the MC of delay to the regulator. When product innovation costs fall over time, an extra day

of regulatory delay increases time to introduction by more than a day. Successful signaling leads

the regulator to adjust regulatory delay. The separating equilibrium of the signaling model gener-

ates testable predictions for how innovation and regulatory delay evolve over time. The model is

consistent with data gathered from one of the Bell telecommunications …rms.
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1 Introduction

The potential for economic regulation to distort the incentives of the …rm to innovate is well known

(e.g., Sweeney, 1981; Cabral and Riordan, 1989). Most of the literature examining regulation and

innovation focuses on the impact of the type of regulatory regime (rate of return vs. incentive

regulation, for example) or on the frequency of policy revision (the so-called “regulatory lag”).

A little-explored avenue is the e¤ect of regulatory delay on innovation.1 Regulatory delay exists

when the regulator does not allow the introduction of new products without regulatory review and

approval. Regulated …rms—for example, in the telecommunications industry—often claim that

regulatory delays are long, costly, and distort the incentives to introduce new products. The im-

pacts may also run in the other direction: the …rm’s innovation decisions may reveal information to

the regulator, which might adjust regulatory delay in response. This direction of causality—from

…rm’s innovation to regulator’s policy— is neglected in the literature to my knowledge. This paper

provides one explanation for changes in regulatory delay and the timing of the …rm’s innovation.

The regulator adjusts delay over time as the …rm, through its timing of innovation, reveals infor-

mation about the cost of delay. The model developd places empirically testable restrictions on the

evolution of innovation delay and regulatory delay.

Recent history in the telecommunications industry shows that innovation and regulatory delay

change over time. In the data from the beginning of the 1990’s from four midwestern states

examined here, a given new product tended to be introduced in di¤erent areas at di¤erent times; by

the end of the decade product launches were more likely to be simultaneous. Many state regulatory

commissions have modi…ed their policies over time to allow products to reach the market sooner.

This pattern also shows up in these data. There are at least three possible explanations for the

shift in the …rms’ and the regulators’ behavior. First, perhaps the agents were not choosing the

optimal innovation timing and regulatory delay at …rst, and later they were. Second, it may be
1 Note that “regulatory delay” is a di¤erent concept than “regulatory lag”. The former refers to delayed introduc-

tion of a new product, whereas the latter refers to the term of regulatory commitment.
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that the agents were optimizing, but that changing circumstances (i.e., parameters in the objective

functions) changed the optimal actions. Third, and most economically interesting, the agents may

hold private information, and have adjusted their actions over time in response to information

revealed by the other agent. In this paper I focus on this third explanation, by means of a signaling

model.

There are regulator-side and …rm-side components to the delay between technological feasibility

of a product and its introduction to consumers. The regulator-side component is the time between

the …rm’s submission of a new product to the regulator for approval and the granting of approval.

I term this component regulatory delay (the term is not intended to be pejorative; delay may have

social bene…ts). The …rm-side component is the time between the …rst technologically feasible

introduction date2 and the submission of the product to the regulator. I term the …rm component

innovation delay. While regulation obviously creates regulatory delay, it may also in‡uence inno-

vation delay. Regulatory delay reduces the opportunity cost of innovation delay by pushing the

forgone pro…ts from the new product farther into the future. When innovation costs fall over time,

regulatory delay thereby induces the …rm to postpone innovation.

The regulator trades o¤ the bene…t of reducing regulatory delay (quicker return on investment

for the …rm and earlier accrual of bene…ts for consumers) and the costs (loss of regulatory control,

potentially lower quality of service, harm to competing …rms, and the like). The trade-o¤ depends

in part on the cost that regulatory delay imposes on the …rm, which is likely to be known by the

…rm better than the regulator. When the …rm knows that the regulator would reduce regulatory

delay if it knew the true cost of delay to the …rm, then the …rm would like to communicate its

private information to the regulator. The …rm can signal its cost of delay with an action that

cannot be pro…tably mimicked by a …rm with di¤erent cost. A costly action available to the …rm is

innovation delay. In particular, departures from the myopically optimal length of innovation delay

(where “myopic” means decision-making taking regulatory delay as …xed) can serve as signals to
2 I.e., the …rst date at which the introduction costs are less than in…nite.
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the regulator.

For innovation delay to serve as a signal, it must be at least partially observable to the regulator.

The regulator is not likely to know when products are technologically feasible. If the …rm operates in

several jurisdictions (e.g., a Bell Operating Company spanning several states), and the …rm chooses

to introduce new products at di¤ering times in the various jurisdictions, each regulator learns from

observing the …rm’s actions in the other jurisdictions. Once the product is introduced in one area,

the regulator in another jurisdiction knows that introduction is technologically feasible.3 The …rm

can then use the time until subsequent submission for approval in the other jurisdictions as a signal.

By jointly modeling the determination of regulatory and innovation delay, this article breaks

new ground. The earliest literature on regulation and the timing of innovation looked at a mo-

nopolist’s incentive to innovate given a …xed regulatory regime (Braeutigam, 1979). More recent

work focuses on adoption timing as entry deterrence or accommodation under di¤erent regulatory

regimes (Riordan, 1992; Lyon and Huang, 1995), but does not explicitly consider regulatory delay.

This paper leaves aside rivalry considerations to focus on the relationship between the regulator

and the …rm. There are a few empirical studies of the impacts of regulatory delay on innovation

(Prager, 1989; Prieger, 1999), but these focus on aspects other than asymmetric information and

signaling. Spiegel and Wilkie (1996) consider a model in which investment in a new technology

has signaling value in a regulated environment, although the receiver of the signal in their model

is the capital market, not the regulator.

The model may also apply to other regulatory settings, such as the timing of patenting and

patent approval, or of pharmaceutical development and regulatory approval. With minor modi-

…cations to the objective functions, the model may also apply to decision-making within a …rm,

where the agents are the R&D division and management, in place of the …rm and the regulator,

respectively. In this setting consumer surplus would not enter management’s objective function. In
3 As long as the existing infrastructure among the jurisdictions is not too dissimilar. When looking at a single Bell

Operating Company, as in my empirical application, this is not likely to be a problem.
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each of these settings, there is asymmetric information and the possibility of signaling and learning

over time.

The outline of the paper is as follows. In the next section, I introduce a basic model of a …rm’s

decision of when to introduce a new product given the regulatory environment, and then embed

the model in a two-period signaling game. Section 3 presents the testable implications derived from

the signaling model. Testing of the predictions is carried out in Section 4 with data from a Bell

Operating Company. The results show that the signaling model is consistent with the evolution of

innovation delay and regulatory delay in all states tested.

2 The Theoretical Model

2.1 A basic model with …xed regulatory delay

To develop a simple model of regulated product introduction, let time t = 0 represent the point at

which a …rm can …rst feasibly introduce a given product. The …rm chooses to submit the product

to the regulator for approval at time s ¸ 0, at which time it incurs …xed development (or adoption)

cost F(s). The length of innovation delay s will be referred to as the innovation date.4 Following

Riordan (1992), …xed costs are assumed to be falling over time as exogenous technological advances

lower the cost of adopting the new service: F 0(t) < 0 and F 00(t) > 0. Falling …xed costs give the

…rm an incentive to delay innovation. The regulator approves the service after an examination

period (i.e., regulatory delay) of length a. Consumers cannot purchase and …rms cannot sell the

good until time s+a, referred to as the introduction date. After time s+a, the …rm earns constant

‡ow pro…t of ¼(µ) per unit time, where µ 2 £ ½ R is a parameter known to the …rm but not the

regulator.5 I assume that ¼0(µ) > 0, so larger µ might correspond to higher demand or to lower

marginal costs. Note that ¼ is not an explicit function of price; to focus on the strategic variable
4 Whether s represents true innovation or merely adoption of existing technology (di¤usion), the resulting game

is the same.
5 The timing of the model is similar to that of Braeutigam (1979).
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s I assume that the …rm is allowed by the regulator to charge the pro…t-maximizing price,6 which

will be a function of µ. The …rm’s discount rate is r, so that its net present value of introduction

at time s is:

¦(s;a;µ) = ¡e¡rsF(s) +
Z 1

s+a
e¡rt¼(µ)dt = e¡rs

µ
¡F(s) + e¡ra

¼(µ)
r

¶
(1)

The …rm chooses optimal innovation date s¤(a;µ) = arg max
s

¦(s;a;µ) which is de…ned by the

…rst order condition (FOC):7

@¦(s; a; µ)
@s

= 0 ) rF(s¤) ¡F 0(s¤) = e¡ra¼(µ) (2)

The left side of equation (2) is the marginal bene…t (MB) from postponing innovation (the reduction

in …xed costs), and right side is the marginal cost (MC) of the same (the forgone pro…t). Thus the

…rm’s private information about µ can be interpreted as information about the opportunity cost of

innovation delay (or, equivalently, of regulatory delay) to the …rm.

Given the assumptions of the model, these propositions follow (proofs are in an appendix).

Proposition 1 @¦=@a < 0 and @s¤=@a > 0. Longer regulatory delay lowers the …rm’s pro…t and

induces the …rm to innovate later.

As regulatory delay increases (e.g., from aL to aH in Figure 1), the forgone pro…t is pushed

farther into the future and its present value, which is the MC of delay, falls. Since MB is decreasing,

to re-equate MC and MB later innovation dates are chosen by the …rm. Thus there is a multiplier

associated with regulatory delay: adding a day to a increases a+s, the date the service is introduced

to consumers, by more than a day.

Proposition 2 @s¤=@µ < 0. A higher opportunity cost of delay induces the …rm to innovate

earlier.
6 Many of the new telecommunications services introduced in the data are classed as “competitive” services and

are allowed to be freely priced by the …rm.
7 To guarantee s¤ > 0, assume rF (0)¡ F 0(0) > e¡ra¼(µ)8µ. To guarantee …nite s¤, assume that limt!1 rF (t) ¡

F 0(t) · 0.
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The relevant picture is the same as Figure 1, where now the top MC curve corresponds to a

higher µ and the bottom MC curve corresponds to a lower µ. At …rst this result might appear

counterintuitive; if regulation is “bad for the …rm” why would higher regulation-induced costs lead

to earlier innovation? The answer is to distinguish between the direct and opportunity costs of

regulation. It is the opportunity costs of regulation that µ measures; as the forgone pro…t from

delay increases, the …rm innovates earlier to speed accrual of those pro…ts. If the direct cost of the

regulatory process is included as a constant in F , then an increase in direct cost would postpone

innovation. This can be seen from Figure 1 by shifting the MB of delay curve up.

2.2 A signaling model

In this section I present a two-period model of innovation and regulation that incorporates the

interaction between the …rm’s choice of innovation date and the regulator’s choice of regulatory

delay. Stage 1 of the game is the basic model above, where the initial level of regulatory delay,

a0 2 R+, is predetermined. To present the issues involved, I …rst discuss a simpli…ed model that

highlights the role of signaling. In this …rst model, the …xed cost F is taken to be constant and non-

prohibitive, so that the …rm wishes to introduce the product immediately. Thus the only potential

value of innovation dates after time 0 is to signal the …rm’s type. The …rm’s choice variable is the

stage 1 innovation date s 2 R+.

In stage 2, there is another new product opportunity, identical to that in stage 1. The regulator

chooses a new level of delay, a 2 R+, then the …rm observes a and selects an innovation date

s2 2 R+ for the second new product. The timing of the game allows the …rm to signal its type

(taken to be …xed over stages) to the regulator in stage 1 to in‡uence the regulatory delay in stage

2.8 The assumption of constant …xed cost is relaxed later, in section 2.3.

The players in the game are the following.
8 The game assumes that the regulator cannot commit in stage 1 to a policy a for stage 2. Lack of commitment

is a common assumption in regulatory games (outside of the mechanism design literature). See Spiegel and Spulber
(1997) for a discussion of why regulatory commitment is not a realistic assumption.
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The …rm The …rm’s pro…t in each stage is (1), except that now F (s) is constant. It is clear

that, absent declining …xed innovation costs and a signaling value to s, the optimal s is zero. Total

discounted pro…t is

¦sum(s;s2; a0; a; µ) = ¦(s; a0; µ) + ±¦(s2; a; µ) (3)

The discount factor ± is determined from r and the (exogenous) time elapsing between stages (the

period of regulatory commitment). For simplicity, take £ ´ fµL; µHg, µL < µH , so that there are

just two types: a low-cost type L and a high-cost type H. As above, “cost” here refers to the

opportunity cost of regulatory delay and is known only by the …rm.

The regulator The regulator’s objective function may represent either social welfare (the “benev-

olent dictator” framework) or the utility function of the regulator (the “economic theory of reg-

ulation” approach to regulation (Peltzman, 1976)). Given that a0 is predetermined, only stage 2

welfare is relevant. Take expected welfare in stage 2 to be

W (s2; a) = Eµ [CS(s2 +a;µ)+ ¦(s2; a; µ)+ V (a)] (4)

Eµ represents expectation taken with respect to the regulator’s posterior beliefs b about the …rm’s

type. CS(t; µ) is net consumers’ surplus when the product is introduced at time t and the …rm’s

type is µ. I assume @CS=@t < 0, @CS=@µ ¸ 0, @2CS=@t2 ¸ 0, and @2CS=@t@µ · 0.9 The …rm’s

type a¤ects CS at least indirectly because the monopoly prices charged are a function of µ. If µ

represents a demand parameter, then µ will also have a direct impact on CS. V is the bene…t to

the regulator from regulatory delay, with V 0 > 0.

The interpretation of V varies with the interpretation of the regulator’s objective. In a benev-

olent dictator setting, V may represent bene…ts not re‡ected in CS from higher quality or lower

level of externalities that may result from regulatory delay.10 In a political economy setting, V
9 These assumptions are consistent with cs being the discounted present value of a constant surplus ‡ow ®(µ). For

example, if cs = exp(¡r [s + a])®=r, then as long as @cs=@µ ¸ 0, the other assumptions follow.
10 If delay represents the time taken by the …rm to bring the product up to a regulatory quality standard, then

longer delays may increase product quality. If delay represents time taken by the regulator to investigate safety or
privacy concerns (e.g., caller ID or caller ID blocking), then longer delays may decrease externalities.
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might represent payo¤s (direct or indirect) to the regulator from the …rm’s rivals or a preference

for exercising authority.

Solution concept The relevant solution concept in this Spence-type signaling game is perfect

Bayesian equilibrium (PBE).11 A PBE consists of the …rm’s strategies s¤1(a0; µ) for s and s¤2(a;µ) for

s2, a strategy a¤(s) for the regulator, and the regulator’s posterior beliefs b(s) about the probability

after observing s that µ = µL, such that

² (s¤1(a; µ); s¤2(a; µ)) maximizes ¦sum(s; s2; a0; a; µ) given the …rm’s correct expectation that a =

a¤(s),

² a¤(s) maximizes W (s2; a) given the posterior beliefs and the regulator’s correct expectation

that s2 = s¤2(a;µ), and

² the beliefs b(s) are derived from Bayes’ rule whenever possible.12

Note that the strategic variables of interest are s, the signal by the …rm in stage 1, and a,

the response by the regulator in stage 2. There will be no strategic considerations in the …rm’s

choice of s2, since it is the last move in the game. I restrict my focus to cases of successful

signaling: separating equilibria. As is well-known in signaling games, the PBE may admit too

many “unrealistic” equilibria because it does not restrict beliefs o¤ the equilibrium path. Multiple

equilibria do not complicate testing the theory empirically, because in section 2.3 I show that all

separating equilibria share certain testable characteristics.

The regulator’s strategy Because the PBE is sequentially rational, we may use backward

induction to solve the game. In the …nal move of the game, the …rm chooses s¤2 = 0 no matter
11 I restrict attention to pure (non-random) strategies.
12 In particular, on the equilibrium path, b = 1 if µ = µL in a screening equilibrium (the regulator learns the …rm’s

true type) and b cannot be updated in a pooling equilibrium (the regulator retains its prior beliefs when it receives
an uninformative signal). Bayes’ rule does not apply o¤ the equilibrium path, since there is no probability of ending
up there.
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what µ or a¤ is; with constant …xed costs, the …rm always prefers immediate innovation. Given

that s¤2 = 0 and that stage 1 actions are bygones, the regulator will choose a¤ as

a¤(s) = argmax
a

[W (s¤2 = 0; a)jb(s)] , (5)

the stage 2 welfare maximizing choice given the posterior beliefs after observing signal s from the

…rm. If a¤ > 0 and W is continuous in a, the optimal choice of regulatory delay thus satis…es
·

@
@a

W (s¤2(a;µ); a)jb(s))
¸

= 0 (6)

Ignoring the expectation operator in (4) for the moment, the FOC is

V 0(a¤) = ¡
·
@CS(a¤; µ)

@t
+

@¦(0; a¤; µ)
@a

¸
(7)

Only the direct e¤ect of a on ¦ need be considered, since s¤2 does not change with a. The term on

the left side is the MB of delay for the regulator. The right side terms compose the regulator’s MC

of delay, which is equal to the MB at a¤.

Of central interest for characterizing a separating equilibrium is how a¤ changes with µ. Some

additional notation will be useful. Let aH and aL be the optimal regulatory delay in stage 2 when

the regulator knows that the …rm’s type is µL and µH , respectively. Whether aL is larger than

aH cannot be determined in general. The reason, made precise in the appendix, is as follows. If

V is assumed concave, the MB of delay for the regulator is decreasing in a. However, the MC of

delay for the regulator is also decreasing in a. The MC curve when the …rm is type H is above the

MC curve when the …rm is type L, given the assumptions in the model. Which downward-sloping

MC curve intersects with the downward-sloping MB curve at the smallest a therefore depends on

relative slopes of the MB and MC curves. The assumptions of the model do not say which curve

is steeper. Thus the optimal regulatory delay could either be increasing or decreasing in the …rm’s

type, and the sign of aL ¡aH is indeterminate. I develop results for both cases.

Consider the outcome of a separating equilibrium. Assume that the predetermined a0 is between

aL and aH.13 Since the sign of aL ¡ aH is ambiguous, the sign of a¤ ¡ a0 is also ambiguous in
13 As it would be, for example, if a¤ is monotone in µ and a0 is stage-optimal given the prior beliefs of the regulator.
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general, even if the …rm’s type is known. If aL < aH , then the low cost type wants to signal its

type to bring about a reduction in a. If aL > aH , then the high cost type wants to signal its type

to bring about a reduction in a.

The …rm’s strategy Looking ahead to a¤(s), the regulator’s policy, the …rm wishes to signal its

type when doing so will cause the regulator to reduce regulatory delay from a0. Take …rst the case

where aL < aH. The low cost type L has an incentive to signal its type to receive aL rather than

aH , since lower a is always better for the …rm. Since both types would set s = 0 to myopically

maximize stage pro…t, the low cost type “burns money” to signal by setting an s > 0. Denote L’s

signal by sL.14 For the signal to be part of a separating equilibrium, signaling must be costlier for

H than for L. First, the high cost …rm must …nd it less pro…table to send signal sL to induce aL

than to send 0, which induces aH :

¦sum(sL;0; a0; aL; µH) · ¦sum(sH1 ;0; a0; aH ; µH) ) (8)

IC1: ±
£
¦(0; aL; µH) ¡ ¦(0; aH; µH)

¤
·

£
¦(0; a0; µH) ¡¦(sL; a0; µH)

¤
(9)

Both sides are positive: the left side is the second period gain from fooling the regulator into

believing the …rm is low cost, and the right side is the …rst period gain from not doing so. This

incentive constraint places a lower bound on sL: if sL is too low the high-cost type will not …nd

the signal too costly to mimic.

The other incentive constraint is for the low cost type. The signal sL must be such that the

gain from signaling reaped in stage 2 outweighs the lost pro…t in stage 1:

IC2: ±
£
¦(0; aL; µL) ¡ ¦(0; aH ; µL)

¤ ¸ £
¦(sL1 ; a0; µL) ¡¦(sL; a0; µL)

¤
(10)

This incentive constraint places an upper bound on sL: if it is too high L will …nd the signal too

costly to send.
14 For ease of presentation, the incentive compatibility constraints are written as if the set of possible low cost

signals is a singleton. This would be so for the case where the regulator has “pessimistic beliefs”: unless it receives
signal sL , it assumes the …rm is type H. The argument does not change materially if the regulator accepts signals
from a set of possible values.
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As long as the upper bound on the signal sL (de…ned by equality in IC2) is above its lower bound

(de…ned by equality in IC1), a separating equilibrium exists.15 The appendix proves existence for

this model.

Figure 2 depicts a PBE when aL < aH . In the …gure, pro…t increases toward the origin because

both a and s are costly to the …rm. IC1 is depicted by the isopro…t curve for H that goes through

point (0; aH).16 The pro…t for H from sending the signal sL and receiving aL in return must be

lower than the pro…t from the myopically optimal s = 0 and receiving aH in return. Signals to the

right of sL, where this isopro…t curve crosses the aL dotted line, satisfy this condition. The heavy

dashed line represents a possible strategy for the regulator that supports a PBE. The regulator

here use a threshold strategy: any signal below sL results in belief b = 0 and action aH , and any

signal at or above sL results in belief b = 1 and action aL.17 Given the regulator’s strategy, L does

best to send signal sL and H does (weakly) best to send s = 0. Any other signals put each type on

an isopro…t curve further to the northeast in the …gure, which represents lower pro…t. Note that

this particular regulatory policy induces the lowest-cost signal from L.

Now consider the case where aL > aH . Type H would like to signal its type. However, because

signaling is less costly for the low cost type, no separating equilibrium can exist. The results from

both cases are summarized in the following proposition.

Proposition 3 In the signaling model with constant …xed costs, if aL < aH a separating equilibrium

exists. Type L signals with s > 0 and receives a < a0 in stage 2 as a result. The type H sets s = 0

and receives a > a0 in stage 2 as a result.
15 The intuitive criterion (Cho and Kreps, 1987) can be invoked to eliminate all separating equilibria except the

unique Pareto-dominating one, which has the least-costly signal (the lower bound de…ned by IC1). The empirical
predictions from the model do not depend on whether the separating equilibrium is the Pareto-dominating one.

16 The isopro…t curves shown in (s;a) space assume that s2 = s¤2(a). The appendix shows that the isopro…t curves
have the convex shape shown in …gure 2.

17 Many other strategies for the regulator would also support this separating equilibrium, as long as the heavy
dashed line in …gure 2 is between aL and aH , above both isopro…t curves, and passes through (sL ; aL).
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2.3 Extending the signaling model: time-varying …xed costs

In dynamic industries such as telecommunications, it is more realistic to assume that the …xed

costs of innovation are not constant but are falling over time. With this extension, a separating

equilibrium may exist even if aL > aH , unlike the constant …xed cost case. Consider the model

from section 2.2 but with the declining …xed costs from section 2.1. The sign of aL ¡ aH is still

indeterminate (see the appendix). An added complication when innovation costs are falling is that

the isopro…t curves are no longer monotonic in (a; s) space. However, it is still true that in any

separating equilibrium, type L signals with a higher s than type H when aL < aH, and vice-versa

(given a single-crossing condition) when aH < aL.

Figure 3 depicts the isopro…t curves representing the two incentive compatibility constraints.

Lower isopro…t curves represent higher levels of pro…t. As before, IC1 prevents signal sL (which

results in aL) from giving more pro…t to H than does sH1 = s¤1(a0; µH) (which results in aH). The

relevant isopro…t curve for H is the one passing through the point (sH1 ; aH), and IC1 excludes L’s

signal from being between A and C on the graph. IC2 prevents L’s signal from giving less pro…t to

L than does sL1 , the stage-optimal s. The relevant isopro…t curve for L is the one passing through

the point (sL1 ; aH), and IC2 restricts L’s signal to be between B and D on the graph. Thus an

incentive compatible separating equilibrium requires L’s signal to be between C and D. Figure 4

shows one possible separating equilibrium. In the …gure, the signal sL is the least costly incentive-

compatible signal. The regulator uses a threshold strategy (the heavy dashed line) to support

equilibrium in this case: any signal below sL results in aH , and any signal at or above sL results

in aL.18 Given the regulator’s strategy, L does best to send signal sL and H does (weakly) best

to send sH1 . The appendix shows that when aL < aH , any separating equilibrium has L sending a

larger signal s than H sends. Consequently, it is always the case that sL ¸ sL1 > sH1 .

When aH < aL instead, then the separating equilibrium has H signaling with a low s (see
18 Other strategies for the regulator would also support this separating equilibrium; see footnote 17.
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Figure 5 for one possible equilibrium and the appendix for details). In this case, the …rm innovates

quicker than would be stage optimal, to signal that delays have a high cost to the …rm.

The results for the model with time-varying …xed costs are summarized in the following propo-

sitions.

Proposition 4 In the signaling model with time-varying …xed costs, if a separating equilibrium

exists, then:

² when aL < aH, type L signals with sL ¸ sL1 in stage 1, and the regulator sets a < a0 and L

chooses s2 < sL in stage 2;

² when aL < aH , type H chooses sH1 in stage 1, and the regulator sets a > a0 and H chooses

s2 > sH1 in stage 2;

² when aL > aH , type H signals with sH · sH1 in stage 1, and the regulator sets a < a0 and H

chooses s2 which may be larger or smaller than sH1 in stage 2;

² when aL > aH , type L chooses sL1 in stage 1, and the regulator sets a > a0 and L chooses

s2 > sL1 in stage 2.

The results in Proposition 4 concerning ¢s ´ s2 ¡ s follow from Proposition 1, which shows

that the stage-optimal s increases with a. In the third bullet point, ¢s is indeterminate: although

the decrease in a will ensure that s2 < sH1 , the stage 1 signal also may be below sH1 to meet IC2

for H.

3 Empirical Predictions and Data

The theoretical model generates predictions for the evolution of innovation and regulatory delay.

The results from the signaling model in section 2.3 depend on whether aH is greater than aL, which

in turn depends on second derivative of V . An observer (i.e., the econometrician) will not know
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if aH is greater than aL if the parameters and functional forms in the game are unknown. What

restrictions does the theory place on observed behavior without this knowledge? Proposition 4

implies the following. For type L one would observe s and a decreasing from stage 1 to stage 2 (the

case when aL < aH), or s and a increasing (the case when aL > aH). In short, the signs of ¢s and

¢a are equal, and an opposite …nding would reject the model. For type H one would observe s

and a increasing (the case when aL < aH), or a decreasing and an indeterminate change in s (the

case when aL > aH). If type is not known, then the only pattern of changes that would reject the

model is ¢s < 0 < ¢a. Such a test is non-parametric, in the sense that it depends only on ¢s and

¢a, and no functional forms need be assumed for pi, CS, or V . The implications of the model are

summarized in Table 1.

Note that the model required that the pro…t, cost, and consumers’ surplus functions were the

same in both stages. In the empirical application, then, I control for variables that a¤ect these (size,

density, and wealth of the market, etc.). Controlling for di¤erence in pro…t, cost, and consumers’

surplus isolates the impact of regulatory delay on innovation.

Data were collected on innovation and introduction dates for new telecommunications services

o¤ered by Ameritech in four of its state jurisdictions: Illinois, Indiana, Ohio, and Wisconsin.19

Ameritech, one of the Bell regional holding companies, is the dominant local exchange company

in each of these states, and its intrastate activities are regulated by the state commissions. Intro-

duction of a new service required petitioning the state regulator; the service could not be o¤ered

to subscribers until regulatory approval was granted. Examples of the residential and business

services in the data are new voice mail features, virtual networking services, and high-speed trans-

mission services. The data cover the span 1991 through 1999, which comprises three regulatory

periods.20 In the …rst period, 1991 through mid 1994, Ameritech was under some form of rate of

return regulation in each state. Following this …rst period, each state switched to some form of
19 The data are from the tari¤ …ling logs of the company and the state commissions. Supplemental information

was culled from the actual state tari¤s where needed.
20 The data for Ohio are complete only for years 1994-1999.
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incentive regulation. After three years of the new regulation, in 1997 the regimes were reviewed

in at least some of these states.21 Thus the regulators had three opportunities to change their

regulatory delay policy (i.e., to change a). Preliminary statistical work revealed that the latter two

periods were indistinguishable in terms of average a and s, and so I take stage one of the game to

correspond to the …rst period and stage two of the game to correspond to the latter two periods.

The …rst di¢culty for the empirical investigation is how to measure s, time between potential

and actual innovation (“innovation delay”). I take the date at which a service is …rst introduced in

any of these states to be t = 0, and then measure s for the other states relative to the …rst state’s

innovation date.22 This e¤ectively underestimates true innovation delay: the true time 0 must be

weakly before the observed …rst “innovation” under this de…nition. However, this measurement

corresponds to the portion of innovation delay that the regulator actually observes, which is the

only useful part for signaling, and therefore is a good measurement of s as used in the model.

To apply the single-…rm single-regulator theoretical model from the previous section, it is assumed

that there are no strategic e¤ects among jurisdictions. To be included in the data set, a new service

had to be introduced in at least two states. One hundred fourteen services were introduced in at

least two states, generating 349 observations. Summary statistics for the observations on s are in

Table 2. Regulatory delay, a, is measured as the time from the …rst tari¤ …ling submission date to

the approval date of the last tari¤ …ling for the service.23 Summary statistics for a are in Table 3.

4 The Empirical Tests

The goal of the empirical work is to test the predictions from the signaling model summarized in

Table 1. To this end, I calculate ¢s, ¢a, and attempt to infer the type of the …rm where it matters
21 See Roycroft (1999) for more information on the regulatory regimes.
22 Some access services were introduced in the federal access tari¤ before in any of the state tari¤s. In such cases s

is calculated using the federal access tari¤ …ling date as t = 0 (and an indicator for these observations, FAT, is used
in the statistical work).

23 Some services had multiple tari¤ …lings and withdrawals before approval was granted. Regulatory delay data is
not available for Ohio.
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for the tests.

Estimating the change in innovation delay From the raw data in Table 3 it appears that

innovation delay dropped substantially from stage 1 to stage 2. I estimate the entire distribution

of innovation delay in the states in the two stages via a nonparametric method (Figure 8).24 The

…gure presents the survival curves (de…ned to be 1 ¡ CDF) and reveals convincing evidence that

stage 2 s stochastically dominates stage 1 s. Estimated means and medians from the curves are

in Table 4, and con…rm the visual evidence from the curves: the mean and median innovation

delay is smaller in each state in stage 2. Although the con…dence intervals for the medians are

non-overlapping only in Indiana and Wisconsin, if a slightly higher quantile is chosen, e.g. the 0.6

quantile (which corresponds to the ordinate 0.4 on the survival curves), the con…dence intervals

are non-overlapping in all states. Thus it appears that ¢s < 0 in each state.

Since the nonparametric method does not allow covariates, I turn next to a semiparametric

model to control for economic conditions and other factors that may change over time and in‡uence

the …rm’s behavior apart from the strategic considerations that I want to isolate. Estimates from a

Cox proportional hazards model are in Table 5. In the Cox model, the hazard rate of the innovation

delay durations is

¸(t;x0i) = exp
£¡(x0i¯)

¤
¸0(t), (11)

where ¸0 is an arbitrary, unspeci…ed baseline hazard and xi is a vector of covariates for spell i.25

Positive coe¢cients for ¯ decrease the hazard and therefore increase mean duration. The …rst

estimation replicates the …nding from the survival curve estimation. When only …xed e¤ects are

included—state dummies (IN, OH, WI), state-speci…c indicators for stage 2 (STATE:reg change),

and the federal tari¤ dummy (FAT, see note 22)—the coe¢cients for the regulatory change all

indicate shorter delay times in stage 2 (see the …rst columns of Table 5). This …nding generally
24 The estimates are from Turnbull’s (1974) generalization of the Kaplan-Meier (Kalb‡eisch and Prentice, 1980)

method.
25 The Cox (1972; 1975) model uses a

p
N-consistent partial likelihood method to estimate ¯ .
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persists when economic covariates are added, such as per capita income (PCI), the number of

access lines in each state (a measure of market size) (ACCESS), population density (denser areas

are cheaper to serve per subscriber due to technologies economies) (DENSITY), and (lagged)

industry telecom patents26 (INDPATt¡1). These covariates are allowed to evolve over the course of

a duration. Adding these variables does not remove the conclusion that ¢s < 0 except for Illinois,

for which the coe¢cient loses signi…cance. Formally, one cannot reject the hypothesis that ¢s > 0

in Illinois at the 5% level. Taken together, then, the evidence from all estimations indicates that

¢s < 0, except possibly in Illinois.

Estimating the change in regulatory delay Evidence on the change in regulatory delay

between the two periods comes from several sources. The …rst evidence comes from the institutional

changes that took place in 1994. In each state, expedited approval for new services received special

attention in the new incentive regulation plans. In Illinois, new services deemed competitive were

allowed to be introduced on one day’s notice, and many more services were classi…ed as competitive

after the regulatory change. In Indiana, all new services were allowed to be introduced on one day’s

notice, down from at least a month of regulatory delay before the new plan. In Ohio, competitive

services were e¤ectively detari¤ed and allowed to be introduced with essentially no regulatory

scrutiny. In Wisconsin, approval for most new services was to be granted after 10 days unless

suspended for investigation, down from about a month under rate of return regulation. The intent

of the new regulation was to ensure that ¢a < 0.

Another source of evidence is to examine the data themselves. Table 3 shows that the mean

and median tari¤ approval delay dropped in Illinois, Indiana, and Wisconsin (no data are available

for Ohio), so it appears that ¢a < 0. Estimation results lead to similar conclusions. The survival

curves for the regulatory delay data (Figure 9) indicate that stage 2 a stochastically dominates

stage 1 a. Estimated means and medians from the curves are in Table 6: the estimated mean
26 The Bell Operating Companies take out few patents themselves, and typically create new services from underlying

technology patented by others.
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and median regulatory delay is smaller in each state in stage 2. The con…dence intervals for the

medians are non-overlapping in all states.

Similarly, in a Cox estimation (Table 7), the coe¢cients indicate statistically signi…cant shorter

regulatory delay time in each state in stage 2. When covariates are included instead of state …xed

e¤ects, all three states still show shorter regulatory delay time in stage 2, but the coe¢cient for

Illinois loses signi…cance. The included covariates are political economy variables used in other

studies of regulatory change (Donald and Sappington, 1997): the log annual budget of the regu-

latory authority (PUCBUDGET), an indicator for Republican control of both houses of the state

legislature and a Republican governor (REPUB), and the average value of REPUB from 1984 up

to the previous year.27 Taken together, the evidence from all estimations indicates that ¢a < 0,

except possibly in Illinois.

The test results From the evidence and estimations above it appears that for all states except

possibly Illinois, we have case 1 from Table 1: ¢s < 0 and ¢a < 0. Even without knowledge of

type, these patterns are consistent with the signaling model. To reject the signaling model, it is

necessary that ¢s and ¢a have opposite signs. The statistical evidence shows that this is not the

case in Indiana and Wisconsin. A combination of statistical evidence (for ¢s) and institutional

evidence (for ¢a) suggests that this is also not the case in Ohio. Thus the signaling model is

consistent with the evolution of innovation delay and regulatory delay in these three states.

For Illinois, the negative coe¢cients on ¢s and ¢a are not signi…cant in all estimations, so we

cannot immediately reject the possibility that we have case 2, 3, or 4 from Table 1. Consider these

cases in turn. Case 2 poses no problem for the signaling model; it is consisten with the theory.

Case 3 is consistent with the model only if the …rm is type H.

Can anything be inferred from the data, then, about the …rm’s type in Illinois? Once one

controls for di¤erences across states, then within a stage the di¤erence in (average) s across states
27 The other political economy variable used in Donald and Sappington (1997), an indicator for elected public utility

commissioners, can not be used here because commissioners are not elected in any state.
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will be driven by di¤erences in µ. So in an estimation that controls for di¤erences in the pro…t

opportunities among states, any residual …xed e¤ects for the states would give information about

µ. In particular, if both types are present in the data, then the state with the largest negative

…xed e¤ect, and therefore the shortest innovation delay after controlling for pro…tability, is type

H. This follows from Proposition 2; type H …rms will have shorter innovation delay than type L

…rms. Controls for pro…tability include economic and demographic covariates such as those used

in the innovation delay estimation above, and also expected regulatory delay.28 The estimation

results are in the …nal column of Table 5. The estimated …xed e¤ect for IL (coe¢cient IL in the

table) is the largest negative state …xed e¤ect. Therefore, if the …rm is type H anywhere, it is in

Illinois. If the …rm is type H in Illinois, then Case 3 does not reject the signaling model.

Case 4 rejects the model regardless of the …rm’s type. To formally test the hypothesis that

¢s < 0 and ¢a > 0, I applied Wolak’s (1991) testing methodology for inequality constraints in

non-linear models. The p-value from the test using the “IL:reg change” coe¢cients from the …xed

e¤ects models is 0.10. The p-value from the test using the coe¢cients from the covariate models

is 0.36.29 Neither test convincingly rejects the Case 4 hypothesis. For Illinois, then, we are left

with institutional, nonparametric, and semiparametric evidence that Case 1 applies, but also with

semiparametric inference too weak to reject that Case 4 might apply.

5 Conclusion and Further Directions

This paper presents a model that endogenizes innovation timing and regulatory delay. The …rm

uses the timing of new product introduction to signal the marginal cost of regulatory delay to

the regulator. In a separating equilibrium, the regulator responds to the revealed information by
28 The variable measuring expected regulatory delay for each observation is constructed assuming the …rm believes

regulatory delay is exponentially distributed (with rate ¸). The expectation is calculated given observed completed
and ongoing delays with Bayesian updating. The prior distribution for ¸ is taken to be Gamma (the conjugate prior).
Regulatory delay data is not available for Ohio and those observations are dropped.

29 In neither the innovation delay nor the regulatory delay estimations can a preferred model be selected (between
the …xed e¤ects and covariates versions); Vuong’s (1989) test for non-nested model selection indicates that neither is
preferred to the other.
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adjusting regulatory delay. The model generates testable predictions, which are not rejected by

data gathered from a Bell Operating Company’s operations in four states. The evidence for one of

the states, however, is mixed.

Of course, the empirical evidence does not rule out all other explanations for the observed

evolution of innovation and regulatory delay. However, external evidence on the changing attitudes

of regulators supports the model. Over the last decade, regulatory commissions (in some cases

prodded by state legislatures) have placed more emphasis on the bene…ts from new products. The

older breed of regulatory o¢cial, accustomed to tight regulatory control and a stable industry,

viewed new products with suspicion. As one regulator put it, “...regulation of telecommunications

remain essential to protect the public from deleterious consequences of innovation...” (Oppenheim,

1991, p.310). Contrast this view with the more recent goals adopted by regulators in the Ameritech

region to “...facilitate the introduction of innovative new services in this competitive marketplace.”

(PSC of Wisconsin, 1998, p.47) This change of attitude about the importance of new products to

consumers and …rms corresponds to the case in the model in which the regulator learns that the

MC of delay is high. In that case (Case 1) the model shows that both innovation and regulatory

delay fall over time, which is exactly what happens in the data.

There are two interesting extensions to the model that deserve future attention. First, in the

current formulation actions undertaken in one jurisdiction have no signaling value to regulators

in the other jurisdictions (apart from alerting regulators that a certain service is technologically

feasible after it is introduced in the …rst state), and the …rm’s decision is taken to be independent

across states. A logical next step for the model is to expand the signaling game to include multiple

receivers of the …rm’s multiple signals. Whether such a model will generate predictions restrictive

enough to falsify the model remains to be seen.

Another extension would be to explicitly incorporate unregulated rivals into the model. The

only impact of competition in the current model is indirect: it may a¤ect the MC of delay to the

…rm (µ) or the regulator’s bene…ts of delay (V ). Given that local telecommunications competition
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was just getting o¤ the ground during the period studied, including competition in the model seems

to be most useful for application to future data sets.
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6 Appendix

Proof of Proposition 1 First, from (1), @¦=@a = ¡e¡ra¼(µ) < 0. Second, letting s¤(a; µ) =

arg max¦(s; a;µ), we can …nd @s¤=@a by di¤erentiation of (2), since (2) holds for all a: @s
¤
@a =

re¡ra¼(µ)
F 00(s¤)¡rF 0(s¤) > 0, where the inequality follows from the assumptions on F (i.e., F 0 < 0 and

F 00 > 0.

Proof of Proposition 2 The marginal cost of delay to the …rm is the same whether the delay

stems from the …rm’s or the regulator’s choice. We can …nd @s¤=@µ by di¤erentiation of (2), since

(2) holds for all µ: @s¤@µ = ¡ e¡ra¼0(µ)
F 00(s¤)¡rF 0(s¤) < 0, where the inequality follows from the assumptions

on F .

Is aL < aH? Assume for the moment that the …rm’s type is known (as it will be in a separating

equilibrium), so that (7) represents the …rst-order condition for the welfare-maximizing a. Then

the impact of a marginal change in type on the regulator’s choice of delay may be found by

di¤erentiating (7), since (7) holds for all µ. Integrating the resulting da¤=dµ over the discrete

change in type from µL to µH tells us whether aL < aH or vice versa. The derivative of (7) with

respect to µ is:

µ
@2CS
@t2

da
dµ

+
@2CS
@t@µ

¶
+ V 00(a)

da
dµ

+
µ

@2¦
@a2

da
dµ

+
@2¦
@a@µ

¶
= 0: (12)

) da¤

dµ
= ¡

@2CS
@t@µ + @2¦

@a@µ
@2CS
@t2 +V 00(a) + @2¦

@a2
(13)

Recall that by assumption we have @CSi=@t < 0, @CSi=@µ ¸ 0, @2CSi=@t2 ¸ 0, and @2CSi=@t@µ ·

0. The other elements required to sign (13) are @
2¦
@a@µ = ¡e¡ra¼0(µ) < 0 and @

2¦
@a2 = @

@a (¡e¡ra¼(µ)) =

re¡ra¼(µ) > 0. Therefore if V (a) is linear or convex, da¤=dµ is unambiguously positive. However,
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the more natural assumption would be that V (a) is concave (i.e., that the marginal bene…t of delay

to the regulator declines as delay increases), and thus the sign of da¤=dµ is ambiguous in general.

If the sign of a marginal change in type is ambiguous, then so is the sign of a discrete change in

type from L to H . Thus the sign of aL ¡aH is not known.

Isopro…t curves when …xed costs are constant Here I show that the isopro…t curves in

…gure 2 must slope down. The slope of an isopro…t curve in (s;a) space is found from (3), which

expands to ¦sum = e¡rs [¡F + e¡ra0¼(µ)=r]+± [¡F + e¡ra¼(µ)=r] (recall s2 is zero in equilibrium).

It follows that the slope is ¡ @¦sum
@s

± @¦sum
@a = ¡ [e¡ra0¼(µ)=r¡F]

er(s¡a)±¼(µ) , which is always negative because

@¦
@s < 0 and @¦@a < 0. Di¤erentiating the slope with respect to s reveals that the curves are convex:

d
ds

µ
¡ @¦sum

@s

Á
@¦sum

@a

¶
= r

µ
@¦sum

@s

Á
@¦sum

@a

¶
> 0: (14)

Conditions for the existence of a separating equilibrium with constant …xed costs If

the participation constraint is met, a separating equilibrium always exists when aL < aH . Whenever

the isopro…t curves of the two types cross, L’s has the ‡atter slope (a “single-crossing” property).

To show this, note that from (14), the slope of an isopro…t curve changes with µ as

@
@µ

µ
¡ @¦sum

@s

Á
@¦sum

@a

¶
=

·
e¡rs

±e¡ra¼(µ)

¸µ£
¡F + e¡ra0¼(µ)=r

¤ ¼0(µ)
¼(µ)

¡
£
e¡ra0¼0(µ)=r

¤¶
< 0

(15)

If ¼ is a positive function, integrating (15) between µL and µH shows that the sign of the non-

marginal change between the two types is negative. Thus H has a steeper downward-sloped isopro…t

curve than L at every point of crossing. Then the isopro…t curves must be as depicted in Figure 2,

and the “L” signal is too costly for type H to send but not too costly for L to send. The incentive

constraints are satis…ed and a separating equilibrium exists.
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The sign of da¤=dµ with time-varying …xed costs The derivative of (7) with respect to µ in

this case leads to an expanded expression for da¤=dµ:

da¤

dµ
= ¡

³
@2CS
@t2

@s¤2
@µ + @2CS

@t@µ

´³
@s¤2
@a +1

´
+ @CS
@t
@2s¤2
@a@µ + @2¦

@a@µ

@2CS
@t2

³
@s¤2
@a +1

´³
@s¤2
@a + 1

´
+ @CS
@t
@2s¤2
@a2 +V 00(a) + @2¦

@a2
(16)

Given that (13) was of indeterminate sign, it is no surprise that (16) is also indeterminate.

Isopro…t curves with time-varying …xed costs As above, the slope of an isopro…t curve

in (s; a) space is ¡(@¦sum=@s)=(@¦sum=@a) = ¡(@¦=@s)=[±(@¦=@a)]. Since the denominator is

negative, the slope is positive to the right of s¤1(a0; µ) and negative to the left (recall that from (2),

@¦=@s evaluated at s¤1(a0; µ) is zero). Thus the isopro…t curves take a maximum at sL1 for L and

sH1 for H , as depicted in …gures 2 and 3. The slope changes with µ as

@
@µ

Ã
¡
@¦
@s

±@¦@a

!
=
@¦
@s
@2¦
@a@µ

±
¡ @¦
@a

¢2 ¡
@2¦
@s@µ
± @¦@a

(17)

The signs of the unambiguous pieces are @¦@a < 0 (as noted in the proof of Proposition 1), @2¦@a@µ =

¡e¡r(a+s2)¼02 < 0, and @2¦
@s@µ = ¡e¡r(a0+s)¼0(µ) < 0. The only term that changes sign with s is @¦@s ,

which as noted above is positive for s < s¤1(a0; µ) and negative for s > s¤1(a0; µ). Thus to the left

of s¤1(a0; µ), (17) is negative, meaning that for a marginal decrease in type from type H, the slope

gets steeper.

By implication, whenever the isopro…t curves of the two types depicted in Figure 3 cross to

the left of sH1 , then the curve for H is ‡atter than the curve for L. Therefore, any separating

equilibrium with aH > aL has L sending a larger signal s than H sends and sL ¸ sL1 > sH1 . The

case ruled out would have L’s signal lower than sH1 (depicted in Figure 6). The only way L’s signal

could be lower than sH1 is if point B is to the left of point A. In that case L’s signal could be

between B and A. But then there must be a point E where the two isopro…t curves cross, and at

E, H’s curve is steeper. Since E must be to the left of sH1 , the proposition states that the H curve

must be ‡atter, so point E creates a contradiction.

To the right of s¤, the sign of (17) is ambiguous.
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The single-crossing condition with time-varying …xed costs When aH < aL we want to

rule out the (nonintuitive) case in which H signals with a high s. To the right of the peaks of

the isopro…t curves, the sign of (17) is ambiguous, and H’s curve might cross L’s curve again (see

Figure 7). As in the constant …xed cost case, a single-crossing condition rules out this behavior.

The single-crossing condition for time-varying …xed costs is essentially the same as (15), with an

extra negative term involving the derivative of F on the left side of the inequality. The condition

always holds given the assumptions of the model, and thus cases like that depicted in Figure 7 are

ruled out.
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Figure 1: Determination of Optimal Innovation Date
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Figure 2: A separating equilibrium when …xed costs are constant and aL < aH

Figure 3: Incentive constraints (aL < aH and falling …xed costs)
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Observed Outcomes Implications from
Case ¢s ¢a the Signaling Model

1 ¡ ¡ possible for either type
2 + + possible for either type
3 + ¡ possible only for type H
4 ¡ + impossible

Table notes: see Proposition 4. These outcomes are based on the model in section 2.3 with decreasing …xed

costs.

Table 1: Empirical Predictions from the Signaling Model

Innovation Delay Innovation Delay
Before Regulatory Change After Regulatory Change

Sample Stage 1 (1991–mid 1994) Stage 2 (mid 1994–1999)
State N min mean median max N min mean median max N
IL 95 0 128 34 665 34 0 45 0 503 62
IN 77 0 457 199 2605 29 0 159 45 1318 48
OH 65 361 1267 1235 2518 8 0 98 26 1071 62
WI 106 0 357 150 2441 40 0 100 18 1667 66
Total 349 111 238

Table notes: …gures are in days. See text for calculation of s.

Table 2: Change in Innovation Delay Between Stages (¢s)
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Regulatory Delay Regulatory Delay
Before Regulatory Change After Regulatory Change

Sample Stage 1 (1991–mid 1994) Stage 2 (mid 1994–1999)
State N min mean median max N min mean median max N
IL 97 1 36 46 48 29 1 30 16 248 68
IN 69 43 103 83 217 15 1 13 3 152 54
WI 103 2 106 44 752 25 1 9 10 48 78
Total 269

Table notes: …gures are in days. Regulatory delay data are not available for Ohio.

Table 3: Change in Regulatory Delay Between Stages (¢a)

Lower 95% conf. Upper 95% conf.
State Period Mean (s.e.) Median limit for median limit for median
IL Stage 1 126.5 (32.4) 32 0 53

Stage 2 45.0 (13.1) 0 0 0
IN Stage 1 320.7 (97.6) 106 76 221

Stage 2 133.5 (38.2) 42 28 53
OH Stage 1 1413 (309) 1493 0 1493

Stage 2 87.3 (23.2) 19 13 32
WI Stage 1 356.6 (81.6) 143 77 201

Stage 2 99.5 (31.4) 19 3 23

Table notes: …gures (in days) are based on survival curve estimates (see Figure 8). Stage 1 is 1991 to mid

1994, Stage 2 is thereafter.

Table 4: Estimated innovation delay s
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Figure 4: A separating equilibrium (aL < aH and falling …xed costs)

Figure 5: Incentive constraints (aH < aL, falling …xed costs)
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Figure 6: Impossible case for incentive constraints

Figure 7: Incentive constraints ruled out by the single-crossing condition
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Figure 8: Nonparametric survival curves for innovation delay s
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Figure 9: Nonparametric survival curves for regulatory delay a
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Cox Proportional Hazards Models
Fixed E¤ects Covariates Type Estimation

State coef. s.e. coef. s.e. coef. s.e.
IL:reg change –0.365¤ (0.214) –0.024 (0.273) –0.270 (0.307)
IN:reg change –0.727¤¤¤ (0.277) –0.822¤¤¤ (0.252) –2.064¤¤¤ (0.461)
OH:reg change –6.360¤¤¤ (0.391) –0.768¤¤¤ (0.291) y

WI:reg change –1.355¤¤¤ (0.220) –0.722¤¤¤ (0.236) –2.780¤¤¤ (0.379)
IL –0.649¤¤ (0.290) –7.131 (4.401)
OH 5.551¤¤¤ (0.444) y

WI 0.380 (0.318) 1.206¤¤ (0.587)
FAT 0.654¤¤¤ (0.137) 0.559¤¤¤ (0.138) 0.641¤¤¤ (0.183)
PCI –4.531¤ (2.096) –8.015¤ (4.896)
ACCESS –0.382 (0.386) 5.884 (4.175)
DENSITY 0.473 (0.401) 1.227 (1.051)
INDPATt¡1 –0.024 (0.273) –0.440 (0.568)
EXPDELAY –0.020¤¤¤ (0.003)

N 580 580 397y
Log likelihood –1626.3 –1632.0 –1129.0

* = 10% level signi…cance; ** = 5% level signi…cance; *** = 1% level signi…cance.

y Regulatory delay data are not available for Ohio.

Table notes: The model incorporates time-varying covariates. Larger positive coe¢cients imply longer

delays. Std. errors are adjusted for multiple observations (clustering) from a state and from an individual

service across states. The number of observations is apparently higher than in Table 2 only because of the

coding of time-varying covariates; the number of actual events underlying both models is the same. Excluded

state dummy is Illinois. FAT is an indicator for innovation delays calculated from the initial date the service

was …led in the Federal Access Tari¤; other delays calculated from the date of the …rst …ling in a state tari¤

(with …rst state’s delay changed from 0 to 0.5). PCI is per capita personal income in the state. ACCESS

is the number of access lines of Ameritech’s subscribers in the state. DENSITY is the state’s population

divided by its area. INDPATt¡1 is the one-year lagged count of patents approved in the classes relevant to

telecommunications services (359,370,379, and 395). The constant in the Cox model is absorbed into the

unspeci…ed baseline hazard.

Table 5: Semiparametric estimation results for innovation delay s
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Lower 95% conf. Upper 95% conf.
State Period Mean (s.e.) Median limit for median limit for median
IL Stage 1 36.2 (3.3) 46 46 46

Stage 2 30.1 (4.7) 17 3 45
IN Stage 1 103.4 (16.4) 83 57 120

Stage 2 13.0 (4.0) 3 3 3
WI Stage 1 105.6 (36.9) 44 24 62

Stage 2 9.5 (0.7) 10 10 10

Table notes: …gures (in days) are based on survival curve estimates (see Figure 9). Stage 1 is 1991 to mid

1994, Stage 2 is thereafter. Regulatory delay data are not available for Ohio.

Table 6: Estimated regulation delay a

Cox Proportional Hazards Model
Fixed E¤ects Covariates

State coef. s.e. coef. s.e.
IL:reg change –0.278¤ (0.163) –0.194 (0.222)
IN:reg change –1.750¤¤¤ (0.309) –1.831¤¤¤ (0.329)
WI:reg change –1.490¤¤¤ (0.266) –1.419¤¤¤ (0.168)
IN 0.801¤¤¤ (0.217)
WI 0.534¤¤ (0.265)
PUCBUDGET –1.348¤¤ (0.549)
REPUB 0.070 (0.150)
REPUBH –0.427 (0.653)

N 299 299
Log(likelihood) –1199.7 –1199.4

* = 10% level signi…cance; ** = 5% level signi…cance; *** = 1% level signi…cance.

Table notes: See notes to Table 5. Regulatory delay data are not available for Ohio. PUCBUDGET is the

log budget of the state PUC. REPUB is an indicator for a Republican governor and Republican majority

in both houses of the state legislature. REPUBH is the average value of REPUB from 1984 to the previous

year.

Table 7: Semiparametric estimation results for regulatory delay a

36


